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When did it all begin?

Quantitative Monitoring of Gene Expression
Patterns with a Complementary DNA Microarray

Mark Schena,* Dari Shalon,*t Ronald W. Dauvis,
Patrick O. Browni

A high-capacity system was developed to monitor the expression of many genes in
parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on
glass were used for quantitative expression measurements of the corresponding genes.
Because of the small format and high density of the arrays, hybridization volumes of 2
microliters could be used that enabled detection of rare transcripts in probe mixtures
derived from 2 micrograms of total cellular messenger RNA. Differential expression

measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color
fluorescence hybridization.
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Where are we now?@l

C> NCBI c -— Entrez, The Life Sciences Search Engine,

QI HOWE |/ SERRCH ['51TE MAF | _PubMed I All Databases L Human Genome ™ GenBank. L _Map Viewer | BLAST

Search across databases |microarray |[ 6o ][Ciear | neip

" - Result counts displayed in gray indicate one or more terms not found

30521] WYl PubMed: biomedical literature citations and abstracts 7] [400] Y Books: onlins books 7]

" PubMed Central: free, full text journal articles 1! @ * OMIM: online Mendelian Inhentance in Man 7]

Site Search: NCBI web and FTP sites i ﬁ OMIA: online Mendelian Inheritance in Animals (7]
@l “ ih “ dbGaP: genotype and phenotype )
"'—N—*_ EST: i) ﬁ UniGene: gene-oriented clusters of transcript sequences (7]
IQI a CDD: conserved protein domain database 'gl

'.gl @ 6 3D Domains: domains from Entrez Structure Igl

ligd! PP UniSTS: markers and mapping data 7]

,ﬂn- PopSet: population study data sets Igl

1. Structu !
' About 30k hits f

& Taxono OU I S O r f@‘ GEO Profiles: expression and molecular abundance profiles 7]

i ; ° ° \ ——— : =

none| (1l SNP: si microdad rrqy N 7941 €8 GEO Datasets: experimental sets of GEO data 7

@ _' Gene: g
A Pubmed

[4] M sma:s
none 5 BioSystems: Pathways and systems of interacting molecules IQ,

S: Cancer Chromosomes: cytogenetic databases 7]

@ PubChem BioAssay: bioactivity screens of chemical substances (7]

none Or\, PubChem Compound: unigue small molecule chemical structures 'Ql



Gene expression process

The genetic information of an organism is stored in a
string composed of 4 letters (nucleotides).

These strings form the DNA molecules that compose the
genome of an organism.

The genome contains segments of DNA that encode
genes.

Genes are transcribed in messenger RNA and
translated to form proteins.



Gene expression process
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H. Causton, J. Quackenbush, and A. Brazma. Microarray gene expression data analysis, 2003



Microarrays

DNA is present in nearly all cells of an organism,
but these are not all the same.

Many differences are due to the different subset of
genes that are expressed in the different cell types.

Microarrays permit the detection of abundance of
various mRNA molecules in a cell.

The abundance of each mRNA can provide
information on the corresponding protein.



How do microarrays work?

DNA microarrays are typically glass
slides on which is printed a series of
spots (tens of thousands) of DNA.

Each spot corresponds to some
portion of a known gene or
predicted open reading frame.

Each spot should identify the
expression level of mRNA transcript
by a gene.




From images to data

The raw data are digital images.

To obtain information about expression levels, each
spot is identified and its intensity measured.

Raw data Spot matrices Gene expression
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Missing and noisy data

In the process of extracting one intensity level from
each spot, many values are missing or affected by
an errotr.

Solutions adopted: ignore sample, estimate or
impute a value.

Due to the cost of each experiment, missing values
are estimated.



An example of data file
I

-|Des:|:ri|::|-ti|:|-r1 | ALL 7

26 |AF F¥-HUMISGF3A/ME7235 MB at (endogenous control) P T67 | P
27 AF FX-HUMISGFIA/METI5_3 at (endogenous control) P 2572 P
2B AF F¥-HUMRGE/M10098_5_at (endogenous control) A SE A
20 |AF F¥-HUMRGE/M100%8_M_at (endogencous control) A =240 A
30 |AF F¥-HUMRGE/M 10088 3 at (endogenaous control) A -538 A
31 AF F¥-HUMGAPDH/M33197_5_at (endogenous control) P 14702 P
32 AF F¥-HUMGAPDH/M33197_M_at (endogenous control) P 17B5E P

33 |AFFY-HUMGAPDH/M33197 3 at (endogenous cantrol) P 24548 P
34 AF F¥-HSACDY/¥00351_5_at (endogenous control) P 20029 P
35 AF F¥-HS&C07/¥00351_M_at (endogenous control) P 27110|P
36 |AF F¥-HSACOT/N00351_3 at (endogenous control) P 25856 P
37 AF F¥-HUMTFRR/M11507_5_at (endogenous control) P 143 P
38 |AF FX-HUMTFRR/M11507 M _at (endogenous control) A 174 A
38 | AFFX-HUMTFRR/M11507_3_at (endogenous control) P Spa p 3239 p 232 A 115 &
40 AFFX-M27830_5_at (endogencus control] A Bl A 129 A 62 A 105 A
(&1 AFFX-M27830_M_at (endogenous control) A 1013 A 1785 A 1782 A 1857 A
42 AFFX-M27830_35_at (endogencous control] A BDE A 1407 A TE4 A 1389 A
43 AFFX-HSACOT/¥00351_3_st (endogenous contraol) P 32891 P 4285 P 5804 P 4763 P
iAFFI—HUMGAPDH!MSEI‘J?_E_H (endogenous control) A =30 A 34 A 27 A -250 A
45 |AFFX-HUMGAPDH/M33157_M_st (endogenous control) P 378 P 2200 A 233 A 437 A
46 | AFFX-HUMGAPDH/M33197_3_st (endogenous control) P 362 P 516 P &07 P 683 P
47 AFFX-HSACOT/N00351_5 st (endogenous control) A -152 A -328 A 217 A =185 A
EAFFI—HSACD?H{FDSEI_M__“ (endogenous control) A 182 A 441 P 184 A 242 A
ﬂﬁFFK—TELﬂﬂE{,ﬁMEPl_at (endogenous control) A -49 A 19 A -85 A -31 A
ﬂﬁFFI—‘I’ELﬂlef_at (endogenous control) A 104 A -244 A -182 A -181 A
iﬁFFI—TELﬂEﬂw!HIPl_at ([endogenous control) A 181 A 343 P 280 A 4492 p
52 | AFF¥-YELO21w/URA3 at (endogenous control) A 411 & 696 A 40 A B4E A




Microarray applications

Gene expression data have proven to be highly
informative of disease state.

In the area of oncology, accurate diagnosis and
appropriate treatment are critical.

Studies on clinical samples have shown gene
expression data can be used to classify tumor
types, detect subtypes, and to predict prognostic
oufcomes.



Classification

Classification has become an important tool for
microarray data analysis.

Extracting information and knowledge from large
amount of data is important to understand the
underlying motivations of complex phenomena.

Binary classification is among the most successful
methods for microarray data analysis.



Challenges in microarrays

a5 ..

-1 Data produced by microarrays are
exponentially increasing.

-1 Publicly available datasets contain

gene expression data with tens of
thousands characteristics.

EETEmmEmcsczzscaaosszrmmmacumIzesaaxzarToauo
e R
B R
s e W E kY
LR

s
[t
S
)
SERET
e

B

Sy
S L
Sy

13
i

U

M

i,

iR

-1 Data are incomplete and noisy.

1 Current classification methods can

over-fit the problem, providing models
that do not generalize well.




Linear discriminant planes

s 4|
-1 Consider a binary classification task with points in two
linearly separable sets.

o There exists a plane that classifies all points in the two sets

-1 There are infinitely many planes that correctly classify the
training data.



Support Vector Machines

I
= Find the plane x’w-b=0 which maximizes the

margin between the two classes

-1 Only few points are needed to compute the plane
(support vectors).



SVM classification

The robustness of SYM relies in the strong fundamentals
of statistical learning theory.

The training relies on optimization of a quadratic
convex cost function, for which many methods are
available.

Available packages for R, Matlab, Weka include SVYM-Lite
and LIBSVM.

These techniques can be extended to the nonlinear
discrimination, embedding the data in a nonlinear
space using kernel functions.



The kernel trick
e

 To obtain
greater
separability
between
classes,

nonlinearly

embed points
into a higher
dimensional
space




Prior knowledge

It is possible to integrate external or prior knowledge
in a classification model.

A natural approach is to plug such knowledge in a
classifier adding directly more points to the training
set.

This results in higher computational complexity, and in
a tendency to overfitting.

Different strategies need to be devised to take
advantage of prior knowledge.



Prior knowledge

An interesting approach is to analytically express
knowledge as additional constraints to the
optimization problem defining a standard SVYM.

This solution has the advantage
not to increase the dimension of the training set,

to avoid overfitting and poor generalization of the
classification model.

An analytical expression of knowledge is needed.



Prior knowledge incorporation




Prior knowledge in SYM

1 Maximize the margin between the two classes, constraining the
classification model to leave one positive region in the
corresponding halfspace:

min / / l
Uy Yy Yy Sy Uy 21y v vy 2 V€y+€8+02':12i
s.t. D(K(I, Ty —~e) +y > e,
—s<u<s,y > 0,
K (), T u—~v —a+vg(z) +2 >0,
UEO, Zq 207
1=1,...,1.

1 Simple extension to multiple knowledge regions.

O. Mangasarian, E. Wild Nonlinear Knowledge-Based Classification. IEEE TNN, 2008.



A different religion: ReGEC

I
71 A binary classification problem can be formulated as

a generalized eigenvalue problem (ReGEC).
o Find x’w;=7; the closer to A and the farther from B:

2
min | Aw—eyll
>0 || Bo—ey I’

O. Mangasarian, E. Wild Multisurface Proximal Support Vector Classification via Generalized
Eigenvalues. IEEE PAMI 2006.



A different religion: ReGEC

2 4 |
71 A binary classification problem can be formulated as

a generalized eigenvalue problem (ReGEC).
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O. Mangasarian, E. Wild Multisurface Proximal Support Vector Classification via Generalized
Eigenvalues. IEEE PAMI 2006.



The kernel trick for ReGEC

4
71 The nonlinear embedding is obtained

with a RBF kernel function:

_ 2
”xi x]”

K(x.,xj)=e_ °

l

1 Each element of kernel matrix is:

2
_”Ai _Fj ”

K(A, F)l.j =e ¢




A different religion: ReGEC

The problem can be restated as: find two hyperplanes (in
the feature space), each the closest to one set and the

furthest from the other. 5
min 1 KA, Du—eyll

- — — KD -y, =0 “NK(B,Du—eyll’

The binary classification problem can be solved as a
generalized eigenvalue problem.



ReGEC

min | K(A,Du—e I I[KAT) —el'd 7117

— min

u,y#0

“YONKB.Du—-eYIl’ I[K(B.T) —el'[u’ 7I
Let

G=[K(A ) —e] [K(AT) —el,
H=[K(B,T) —el[K(B,) =—e],
z=[u 7.

the equation becomes:

/
min < 0%

c Rn+1 ,
; 7z Hz

Rayleigh quotients of Gz = AHZ.



Regularization of ReGEC

To regularize the problem, generate the two
proximal surfaces:

K&\ Du -y, =0 K" Du—y, =0
solving

min KA Du—ey I +6 | K yu—e¥ I’
0 1K (B, Dyu—e¥IP

min | KB, Du—ey > +1l Kyu —e7 I
IK(A.Dyu—eIP

EA and EB main diagonals of K(A, I') and K(B, I')

M.R. Guarracino, C. Cifarelli, O. Seref, P. Pardalos. A Classification Method Based on
Generalized Eigenvalue Problems, OMS, 2007.



Prior knowledge in ReGEC

It is possible to extend prior knowledge to
Regularized Generalized Eigenvalue Classifier

(ReGECQ).

The new algorithm halves the missclassification error
of the original method.

The idea of increasing the information contained in
the training set with additional knowledge is
appealing for biomedical data.

The experience of field experts or previous results
can be readily transferred to new problems.



Prior knowledge in ReGEC

s J
71 Let A be the set of points in B describing a priori

knowledge, constraint matrix C represents knowledge

imposed on class B :

11 Constraint imposes all points in A to have zero
distance from the plane => to belong to B



Prior knowledge in ReGEC

Prior knowledge can be expressed in terms of
orthogonality of the solution to a chosen subspace:

C'z=0

where Cis a n X p matrix of rank r, withr < p <n

The constrained eigenvalue problem with prior
knowledge for points in class B is:

min < GZ
z#0 Z'H 7
st. Clz=0




Radial Basis Function Neural Networks
Ta |

» A RBF network is divided into two operative blocks: an inner
hidden layer, and the output layer.

» [he hidden layer, as it is based on neurons with a radial basis
activation function, creates a response localized on the input
vector x; the binary output will then be calculated as a
weighted sum of these localized responses.

» Training a RBF network is a procedure divided into two

phases:

1. With an unsupervised learning technique, the parameters of
the radial basis function are calculated.

2. Values of the weights w, which determine the binary output y,
are then computed.



RBF network parameter estimation
N

» Traditionally there are two strategies for this first phase of
unsupervised learning.

» [ he classic strategy calculates these parameters through
different clustering techniques.

» [hese aim to divide the training set into a fixed amount of
homogeneous groups, organized according to the distance of
the points in the training set.

» Besides clustering, it is possible to have an incremental
approach.

» In this way, one seeks to reduce the mean quadratic error
under a threshold ¢ by adding nodes to the hidden layer.



RBF network weights estimation
I

» In the second part of the training, we search for values of the
weights w which determine the binary output y.

» Such weights are calculated by minimizing the following error
function:

E=5 (%) - o)
=1

which tells the distance of the actual solution from the desired
one.

» Prior knowledge is added by a modification to this phase.



Prior knowledge in RBF NN
I

» Prior knowledge is then added as a set of constraints to
obtain the following minimization problem:

min =3 (v(X:) — 6i)? (9)
>
i=1
s.t. Bx > 0.

» [he constraints of this problem force the hyperplane solution
of the equation (9) to pass through the m points represented

by the matrix B € R™*",

» Algebraically, this means the solution has to be searched in
the subspace generated by prior knowledge points.



Knowledge as a mining task

s it possible to choose a method to discover
knowledge in the training data, using a learning
method consistently different from SVM?

Logic mining method Lsquare, combined with a feature
selection based on integer programming, has been
used to extract logic formulas from the data.

The most meaningful portions of such formulas
represent prior knowledge for ReGEC.



Knowledge discovery for ReGEC

Results exhibit an increase in the recognition
capability of the system

We propose a combination of two very different
learning methods:

ReGEC, that operates in a multidimensional Euclidean space,
with highly nonlinear data transformation, and

Logic Learning, that operates in a discretized space with
models based on propositional logic
The former constitutes the master learning algorithm,
while the latter provides the additional knowledge



Logic formulas

The additional knowledge for ReGEC is extracted
from training data with a logic mining technique

Such choice is motivated by two main considerations:

the nature of the method is intrinsically different from the
ReGEC adopted as primary classifier;

the logic formulas are, semantically, the form of
““*knowledge" closest to human reasoning and therefore
resemble at best contextual information.
The logic mining system consists of two main
components, each characterized by the use of integer
programming models



The Logic Formulas Miner

Builds logic separations in Disjunctive Normal Form (DNF)
|dentifies iteratively the clauses of the DNF that separates the
largest part of object in one class from all the objects of the
other class

Clause identification is based on the solution of a Minimum Cost
Satisfiability Problem (MINSAT), computationally hard

S S S S

A T T F ?

I p.=True, q.= False A T F F T

s, =4—1 p,= False, ;= True A T F F =
0 p,=gq,= False 1| T T T 2

I F 2 F T

p, True, q, False PV T,

p, False, q, False

p, False, g, True

p, False, q, False Sl AN S3
P. Bertolazzi, G. Felici, P. Festa, G. Lancia. Logic classification and feature selection for
biomedical data, Computer and Mathematics, 2008.



Acute Leukemia data

* Golub microarray dataset (Science, 1999)

* The microarray

Principal Component Scatter Plot with Colored Clusters

data have 72 - _
. i AML
samples with 7129
gene expression - :
values 5: |
= Data contain 25 g |
Acute Myeloid g 5}
Leukemia and 47 o0}
Acute 15}
Lymphoblastic B T —

Leukemia samples



Logic Formulas

The dataset has been discretized and the logic
formulas have been evaluated. Those formulas are in

the form:

IF p(4196) > 3.435 AND p(6041) > 3.004 THEN class],
IF p(6573) < 2.059 AND p(6685) > 2.794 THEN class],

IF p(1144) > 2.385 AND p(4373) < 3.190 THEN class — 1,
IF p(4847) < 3.006 AND p(6376) < 2.492 THEN class — 1,

where p(i) represents the i-th probe.

The knowledge region for each class, are those given
by the intersection of all chosen formulas.



Classification accuracy
I

Table 1. Accuracy results of ten fold (1) and leave one out (2) cross validation

Dataset  ReGEC (1) LF (1) LF-ReGEC (1) SVM(2) TSP(2)
Leukemia 08.33% 86.36% 100% 098.61% 093.80%

1 Leave one out cross validation used for ReGEC.

-1 The ReGEC method with prior knowledge found with
LF becomes fully accurate on the dataset.



Microarray experiments

Table 2. Datasets characteristics
Dataset  Platform  genes (P) samples (N) Reference
Leukemia Affy 7129 25 (AML) 47 (ALL) (Golub et al, 13)
Prostatel Affy 12 600 52 (T) 50 (N) (Singh et al. 23)
Prostate2 Affy 12 625 38 (T) 50 (N) (Stuart et al. 2%)
CNS Affy 7129 25 (C) 9 (D) (Pomeroy et al, 29)
GCM Affy 16 063 190 (C) 90 (N) (Ramaswamy et al. 2!)

71 Results regard its performance in terms of
classification accuracy.



Accuracy results
I

Table 3. Ten fold (1) and leave one out (2) cross validation accuracy results

Dataset NULL ReGEC (1) LF (1) LF-ReGEC (1) SVM(2) TSP(2)
Leukemia 65.27% 98.33% 86.36%% 100%: 98.61% 93.80%
Prostatel  50.98% 84.62% T7.80% 84.62% 01.18% 05.10%
Prostate2 56.81% 65.78% 73.50% 75.25% 76.14% 67.60%%

CNS T3.52% 65.78% 79.20% 82.58% 82.35% T7.90%
GCM 67.85% 70.45% 79.60% 71.43% 03.21% 75.40%

1 LF method is more accurate than TSP in three cases out

of five.

71 In all cases, LF-ReGEC, produces equal or higher

accuracy results.



Conclusion

Microarrays experiments produce challenging
datasets.

Available classification methods provide results
affected by noisy and incomplete data.

Omics science problems require decisions based on
incomplete and uncertain data.



