
Incremental Generalized Eigenvalue
Classification on Data Streams

Mario R. Guarracino, Salvatore Cuciniello, Davide Feminiano

High Performance Computing and Networking Institute

National Research Council, Italy

Abstract

As applications on massive data sets are emerging with an in-
creasing frequency, we are facing the problem of analyzing the data
as soon as they are produced. This is true in many fields of science
and engineering: in high energy physics, experiments have been done
to transfer data at a sustained rate of 150 gigabits per second. In
Y2007, that speed will enable the delivery to users of data contin-
uously produced by the LHC particle accelerator located at CERN.
Other examples can be found in network traffic analysis, telecommu-
nications data mining, discrimination of data from sensors that mon-
itor pollution and biological hazards, video and audio surveillance. In
all cases, computational procedures have to deal with a large amount
of data that are delivered in form of data streams. Traditional data
mining techniques assume that the dataset is static and, to increment
knowledge, random samples are extracted from the dataset. In this
study, we use Incremental Regularized Generalized Eigenvalue Classi-
fication (I-ReGEC), a supervised learning algorithm, to continuously
train a classification model from a data stream. The advantage of this
technique is that the classification model can be update incrementally.
The algorithm online decides which are the points that contain new
information and updates the available classification model. We show
through numerical experiments, on a synthetic dataset, the method
performance, highlighting its behavior with respect to the number of
incremental training set, the accuracy classification and the through-
put of the data stream.

1

1 Introduction

The even-increasing amount of data generated in scientific and technical ap-
plications imposes new ways to extract knowledge from information. In high
energy physics, for example, LHC particle accelerator located at CERN is
going to produce tens of terabytes of data per second, which can be filtered
down to hundreds of gigabytes per seconds by hardware preprocessing. Ex-
periments have shown it is possible to transmit data at a sustained rate
of 150 gigabits per second, in order to start delivering, in Y2007, the data
continuously produced by the new generation accelerators, to users. Other
examples can be found in computer networks traffic, bank transactions, web
search and click streams and video/audio sensors. All those situations im-
pose to rethink to the way in which information is acquired, stored and
transmitted and to provide a shift in paradigms for data analysis.

The analysis of data streams is actually recognized in all those applica-
tions where data are not well represented by a persistent collection of items,
but rather by an evolving data stream. The particular behavior of data
streams consists in its continuous unpredictable arrival at highly rate. This
relevant feature leads to a data stream model in which data are not randomly
available in memory, but rather they appear as a continuous flow, where each
window of items is available online only once. Furthermore, the period of
time in which each window will be available for processing, depends on the
stream speed and the capacity of the buffer used for temporary storage. The
process of extracting knowledge from data streams reflects the mentioned
features. Indeed, any mining task needs to be able to be performed online,
that means data need to be processed on fly, at the speed in which they are
transmitted. Furthermore, algorithms need to sample data, in such a way
that models do not over fit data and are detailed enough to describe the
phenomena. Finally, algorithms need to change their behavior during time,
accordingly to the nature and gradient of the data. An interesting aspect
of data stream analysis is that once a data item has been processed it can
be either discarded or stored for its relevant informative contribute. In fact,
even legacy data bases and warehouse containing terabytes of data could
take advantage from this kind of analysis. If data can not be loaded in main
memory, they could be accessed as a data stream [13].

In the case of supervised classification, which is the task of separating
data into classes, starting from a set for which discrimination is known, stan-
dard methods rely on the persistence of a complete training set to build the
discrimination model.

2

Applications of supervised classification on data streams are numerous.
A classification model can be continuously trained over time with data re-
garding loan requests, and delivered to bank branches to predict the ability
of a client to pay back. A video surveillance system can learn and detect
suspicious behaviors of moving objects. A mail server can detect spam in
the incoming stream of mails, dynamically changing its classification model
to reflect the changes in spam flows. An online classifier can accurately iden-
tify the malicious applications associated with a TCP flow. Unfortunately,
classification algorithms suffer of large memory requirements, when trained
in batch mode. Therefore, data have to be partitioned in subsequences and
analyzed in windows.

Among existing classification algorithms available for data streams there
are Support Vector Machines (SVM). SVM algorithms [20] are the state-of-
the-art for the existing classification methods. These methods classify the
points from two linearly separable sets in two classes, finding an optimal
separating hyperplane between two classes. This hyperplane maximizes the
distance from the convex hulls of each class. SVM can be extended to the
nonlinear cases by embedding the data in a nonlinear space using kernel
functions [18].

There are also efficient algorithms that exploit the special structure of a
slightly different optimization problem, such as Generalized Proximal SVMs
(GEPSVM) [12], in which the binary classification problem can be formu-
lated as a generalized eigenvalue problem. This formulation differs from
SVM since, instead of finding one hyperplane that separates the two classes,
it finds two hyperplanes that approximate the two classes. The prior study
requires the solution of two different eigenvalue problems, while a classi-
fier that uses a new regularization technique, known as Regularized General
Eigenvalue Classifier (ReGEC) requires the solution of a single eigenvalue
problem to find both hyperplanes [6].

In this work we propose SI-ReGEC, a novel technique based on I-ReGEC
[4], that can be used to classify data streams. It is based on an incremental
learning technique applied to a generalized eigenvalue classifier. With re-
spect to other available algorithms, it determines classification models based
on a very small sample of the stream, and it provides accuracy results that
are comparable with other methods.

The notation used in the paper is as follows. Scalar product of two vec-

3

tors x and y in Rn will be denoted by x′y, 2-norm of x will be denoted by
‖x‖ and the unit vector will be denoted by e. The traspose of a matrix C is
CT .

The remainder of the the papers is organized as follows. In Section 2
related work is presented. In Section 3 the SI-ReGEC algorithm is detailed.
In Section 4, numerical results are reported and discussed. Finally, in Section
5, conclusions are drawn and future work is proposed.

2 Related work

As machine learning becomes a part of data intensive computational sys-
tems, updating the learning system becomes intractable in many cases.
Therefore, incremental methods that require some minimal computational
burden to build and update classification models are strongly preferred. For
this purpose, several methods, especially for kernel-based nonlinear clas-
sification, have been proposed to reduce the size of the training set, and
thus, the related kernel [3, 5, 10, 11, 16]. All of these methods show that a
sensible data reduction is possible while maintaining a comparable level of
classification accuracy.

The general purpose methods are only suitable for small size problems,
whereas for large problems, chunking subset selection [14] and decomposi-
tion methods [15] use subsets of points. SVM-Light [9] and LIBSVM [8]
are among the most preferred implementations that use chunking subset
selection and decomposition methods efficiently. SVM algorithm is used
in different areas and its variations have been applied to classify also data
stream.

Here we refer to five different techniques based on SVM, that are those
used for performance comparison.
Batch technique (B). This technique uses SVM model with complete data
set at once, therefore we denote it as batch mode.
Error-driven technique (ED). This technique is a variation of the method
introduced in [13]. This technique defines two sets. It randomly takes k
samples and stores them in the first set; all the others are stored in the
second set. It then builds the classifier using KNNR [7] and it classifies the
points of the other set. If a point is well classified, it remains in the set,
otherwise it is moved in the other set. The procedure ends when there are
no more points to transfer from one set to the other. The points used for
incremental training are a percentage of both misclassified points.

4

Fixed-partition technique (FP). This method is introduced in [19] and it
previews to divide the training set in batches of fixed size. This partition
permits to add points to current support vector machine accordingly to the
loaded in memory.
Exceeding-margin technique (EM) [5]. Given the model SV Mt at the time
t and for each new point the algorithm checks if the new data exceeds the
margin evaluated by SV Mt. The point is added to the incremental training,
if the margin is exceeded, otherwise it is discarded. If the points is added
then the new model SV Mt+1 is calculated.
Fixed-margin+errors technique (EM+E) [5]. This technique is similar to the
previous method, but in this case the new point is added to the incremental
training either if it exceeds the margin or it is misclassified.

Since SI-ReGEC shares several common features with all those tech-
niques, a comparison among them is meaningful and fair.

3 Algorithm

3.1 Classification based on Generalized Eigenvalues

Consider two matrices A ∈ Rn×m and B ∈ Rk×m, that represent on each
row the samples of the two classes. [12] proposes to classify these two sets
of points A and B using two hyperplanes in the feature space, each closest
to one set of points, and furthest from the other. In case of non linearly
separable datasets, we can take advantage of kernel techniques to achieve
greater separability among classes. In that case, the initial problem is non-
linearly transformed into a space of greater dimension and the discrimination
is found in that space.

This nonlinear mapping can be done implicitly by kernel functions [17],
which represent the inner product of the elements in a nonlinear space.

In this study we use the Gaussian kernel,

K(xi, xj) = e−
‖xi−xj‖

2

σ . (1)

In (1), xi and xj denote two points in the feature space. This technique
usually allows to obtain better separation among classes, as shown in several
applications. Results regarding nonlinearly separable problems [1, 2] still
hold and a formulation for the eigenvalues problem can easily be derived.

5

In the nonlinear case, we use the kernel matrix K(A, B), where each
element is defined as:

K(A, B)i,j = e−
‖Ai−Bj‖

2

σ . (2)

where Ai and Bj are the ith and jth rows of the matrices A and B,
respectively.

The two hyperplanes

K(x, C)u1 − γ1 = 0, K(x, C)u2 − γ2 = 0 (3)

can be obtained using the new regularization method ReGEC, proposed by
[6], by solving the following generalized eigenvalue problem:

min
w,γ 6=0

‖K(A, C)u− eγ‖2 + δ‖K̃Bu− eγ‖2

‖K(B, C)u− eγ‖2 + δ‖K̃Au− eγ‖2
. (4)

where CT =
[
AT BT

]
and δ is the regularization parameter.

Here K̃A and K̃B are diagonal matrices with the diagonal entries from the
matrices K(A, C) and K(B, C). The new regularization leads to a problem
which provides accuracy results comparable to the original method.

The eigenvectors related to minimum and maximum eigenvalues obtained
from the solution of (4) provide the proximal planes (3) Pi, i = 1, 2 to classify
the new points. The distance of a point x from hyperplane Pi is:

dist(x, Pi) =
|K(x, C)u− γ|

‖u‖
, (5)

and the class of a point x is determined as

class(x) = argmini=1,2{dist(x, Pi)}. (6)

3.2 Incremental subsets selection

Incremental subset selection permits to construct a small set of points that
retains the information of the entire training set and provides comparable
accuracy results. A kernel built from a smaller subset is computationally
more efficient in predicting new elements, compared to the one that uses
the entire training set. Furthermore, a smaller set of points reduces the
probability of over-fitting the problem. Finally, as new points are available,
the cost to retrain the algorithm decreases if the influence of those new

6

points on classification is only evaluated with respect to that subset, rather
than the whole training set.

The algorithm takes an initial set of points C ⊃ C0 = A0 ∪ B0 and the
entire training set C as input, where A0 and B0 are sets of points in C0

that belong to the two classes A and B. We refer to C0 as the incremental
subset. Let Γ0 = C \ C0 be the initial set of points that can be included in
the incremental subset. ReGEC classifies all of the points in the training
set C using the kernel from C0. Let PA0 and PB0 be the hyperplanes found
by ReGEC, R0 be the classification accuracy and M0 be the points that are
misclassified. Then, among the points in Γ0 ∩M0 the point that is farthest
from its respective hyperplane is selected, i.e.

x1 = xi : max
x∈{Γ0∩M0}

{
dist(x, Pclass(x))

}
, (7)

where class(x) returns A or B depending on the class of x. This point is
the candidate point to be included in the incremental subset. This choice is
based on the idea that a point very far from its plane either is either needed
in the classification subset to improve accuracy, or it is an outlier. We update
the incremental set as C1 = C0 ∪ {x1}. Then, we classify the entire training
set C using the points in C1 to build the kernel. Let the classification
accuracy be R1. If R1 > R0 then we keep the new subset; otherwise we
reject the new point, that is C1 = C0. In both cases Γ1 = Γ0 \ {x1}.
The algorithm repeats until |Γk| = 0 at some kth iteration. The s initial
points are the training points closest the centroids determined by a simple
k-means algorithm applied to each class. In [4] is showed that the k-mean
based selection criteria gives the best performance in term of stability and
accuracy, with respect to random selection of initial points.

3.3 Incremental learning on streams

In order to describe the use of the previous method on data streams, we will
fix our attention to a single window. At the beginning, when incremental
subset selection is performed, the initial points are determined by a simple
k-mean algorithm. In the following steps, the initial points are taken from
the incremental subset returned by the previous step. The procedure repeats
until there are points in the stream . In Algorithm 1, we detail the procedure.
Let C be the wsize points that are initially captured from the stream. Let
C0 the 2km centroids determined by kmeans algorithm. Every time new data
is loaded from the stream, the previously determined incremental subset is
used as C0.

7

Algorithm 1 SI-ReGEC(km,stream,wsize)

1: C = load(stream,wsize)
2: C0 = kmean(C, km)
3: Γ0 = C \ C0

4: {R0, M0} = Classify(C, C0)
5: repeat
6: k = 1
7: while |Γk| > 0 do
8: xk = x : maxx∈{Mk∩Γk−1}

{
dist(x, Pclass(x))

}
9: {Rk, Mk} = Classify(C, {Ck−1 ∪ {xk}})

10: if Rk > Rk−1 then
11: Ck = Ck−1 ∪ {xk}
12: end if
13: Γk = Γk−1 \ {xk}
14: k = k + 1
15: end while
16: C0 = C0 ∪ Ck

17: Γ0 = load(stream,wsize)
18: until |Γ0| = 0

4 Numerical results

Performance results are calculated using an Intel Pentium 4 3.00GHz, 1GB
RAM running Windows XP with Matlab 7.1. Matlab function eig, for the
solution of the generalized eigenvalue problem, is used for ReGEC.

SI-ReGEC is tested on Large-noisy-crossed-norm data set. It has 200.000
points with 20 features equal divided in 2 classes. 100.000 points are used
as training set and the remaining 100.000 to test the classifier. Each class
is drawn from a multivariate normal distribution with unit covariance ma-
trix. One class has mean µ1 = 2/

√
20 along each attribute and the other has

mean µ2 = −2/
√

20. A Gaussian kernel is used for SI-ReGEC classifier with
σ = 120 value of the best kernel parameter, km = 2 for the k-means method.
The km value for each dataset is empirically determined as follows: first,
the best σ value is determined for km = 2 using ten-fold cross-validation;
then, the best km value is determined by gradually increasing its value.

In Table 1, classification error, number of samples in the incremental
subset and window size for different methods applied to Large-noisy-crossed-
norm data set. SI-ReGEC performances, expressed as percentage of clas-

8

Parameter B ED FP EM EM+E SI-ReGEC

Error (%) 3.2 9.1 3.2 4.5 6.7 2.88
subset train 8321 4172 8452 1455 5308 413
window size 100000 500 500 500 500 500

Table 1: Classification error, dimension of the incremental subset and win-
dow size for Large-noisy-crossed-norm

Wsize Acc. Growth Rate Avg. Time Time

500 96.13% 15.75 4.25s 8.5e-4s
1000 96.92% 4.31 15.16s 1.5e-3s
2000 96.50% 2.63 61.79s 3.1e-3s
4000 97.45% 1.81 232.49s 7.0e-3s

Table 2: Accuracy, growth rate, average time for each step and time for a
single point.

sification error, show to compare well with the other incremental methods
considered. It can be seen that SI-ReGEC has the lower error and it uses
the smaller incremental set.

Table ?? shows for different values of the window size: classification
accuracy, growth rate of incremental subset, average elapsed time for the
execution on single window, average time for model update for a single sam-
ple, average ratio between incremental subset and training dataset. Results
refer to a 10% sample of the dataset. We note that the accuracy is not
influenced by window dimension wsize. The growth rate of the incremental
subset decreases as the window size increases, leading to a smaller subsets for
larger windows, although the execution time is four fold for a two fold win-
dow size. The better average time for a single sample processing is obtained
for wsize = 500 and data is processed at 1.43Mbs.

In order to understand the influence of wsize on the incremental set, in
Figure 1 we show the number of points of the incremental set on the first
window and after the classification of 10% of samples in the dataset, for an
increasing size of wsize. We note when wsize increases, the same happens to
the number of initial points, whereas the final dimension of the incremental
dataset decreases. This results confirms when a faster execution is needed,
more storage space needs to be allocated to the incremental set samples.

9

Figure 1: Incremental set size for wsize and 10.000 samples

5 Conclusions

In this study, we have introduced SI-ReGEC, an incremental algorithm that
reduces the dimension of the training sets and, for each execution window
of the stream, adds only few points to update the classifier. The proposed
method i) achieves a classification accuracy that compares well with other
incremental learning and batch mode methods and ii) produces smaller in-
cremental training sets. In future, we will investigate how to adaptive win-
dow dimension to stream rate and storage requirements.

6 Acknowledgments

This work has been partially supported by Italian National Research Council
and Centro Ricerche Enrico Fermi.

References

[1] K. Bennet and C. Campbell. Support vector machines: Hype or hal-
lelujah? SIGKDD Explorations, 2(2):1–13, 2000.

10

[2] K. Bennett and O. Mangasarian. Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Soft-
ware, 1:23–34, 1992.

[3] G. Cauwenberghs and T. Poggio. Incremental and decremental support
vector machine learning. In NIPS, pages 409–415, 2000.

[4] C. Cifarelli, M.R. Guarracino, O. Seref, S. Cuciniello, and P.M. Parda-
los. Incremental classification with generalized eigenvalues. Technical
Report RT-ICAR-NA-2006-12, ICAR-CNR, June 2006.

[5] C. Domeniconi and D. Gunopulos. Incremental support vector machine
construction. In First IEEE International Conference on Data Mining
(ICDM’01), pages 589–593, 2001.

[6] M. R. Guarracino, C. Cifarelli, O. Seref, and P. M. Pardalos. A classifi-
cation algorithm based on generalized eigenvalue problems. Optimiza-
tion Methods and Software, in print, 22(1):73–81, 2007.

[7] P. Hart. The condensed nearest neighbor rule. IEEE Trans. on Inform.
Th., (14):515–516, 1968.

[8] C.W. Hsu, C.C. Chang, and C.J. Lin. A practical guide to sup-
port vector classification. http://www.csie.ntu.edu.tw/ cjlin/papers/
guide/guide.pdf, 2004.

[9] T. Joachims. Making large-Scale SVM Learning Practical. Advances in
Kernel Methods - Support Vector Learning. MIT-Press, 1999.

[10] Y.J. Lee and O.L. Mangasarian. Rsvm: Reduced support vector ma-
chines. In First SIAM International Conference on Data Mining, 2001.

[11] K. Lin and C. Lin. A study on reduced support vector machines. IEEE
Transactions on Neural Networks, 6(14):1449 – 1459, 2003.

[12] O. L. Mangasarian and E. W. Wild. Multisurface proximal support
vector classification via generalized eigenvalues. Technical Report 04-
03, Data Mining Institute, September 2004.

[13] P. Mitra, C.A. Murthy, and S. K. Pal. Data condensation in large
databases by incremental learning with support vector machines. ICPR,
02:2708, 2000.

11

[14] R.F.E. Osuna and F. Girosi. An improved training algorithm for sup-
port vector machines. In IEEE Workshop on Neural Networks for Signal
Processing, pages 276–285, 1997.

[15] J. Platt. Advances in Kernel Methods: Support Vector Learning, chap-
ter Fast training of SVMs using sequential minimal optimization, pages
185–208. MIT press, Cambridge, MA, 1999.

[16] L. Ralaivola. Incremental support vector machine learning: A local
approach. Lecture Notes in Computer Science, 2130:322–330, 2001.

[17] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, 2002.

[18] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge University Press, Cambridge, UK, 2004.

[19] N. Syed, H. Liu, and K. Sung. Incremental learning with support vector
machines, 1999.

[20] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

12

