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Introduction

* Machine learning powers many aspects of modern
society: from web searches to recommendation
systems, from transcribing speech to text to the
identification of genetic mutations leading to diseases.

* The ability to take advantage of increases in available
computation and data will considerably impact in its
Success.

* In this tutorial we will see how to extract knowledge
from information structured from available data.
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Supervised learning

The most common form of machine learning is
supervised learning.

Imagine we want to build a system that can classify
patients affected by cancer using the abundance of
specific molecules present in blood samples.

We first collect a large dataset of blood samples,
each labeled with presence/absence of cancer.

During training, the machine is shown the data and
produces a model minimizing the error in assigning
data to their class.



Supervised learning

Supervised learning refers to the capability of a
system to learn from examples (training set)

The trained system is able to provide an answer
(output) for each new question (input)

Supervised means that the desired output for the
training set is provided by an external teacher

Binary classification is among the most successful
methods for supervised learning



Semi-supervised learning

e Digital technologies produce a large quantity of un-
annotated data, and few labeled data useful for

training.
e Exploiting info from the unlabeled data in the
learning phase is of great practical importance.

* The significance of semi-supervised learning might
find its foundations in human learning.

— Human learning occurs in a semi supervised regime (eg.
acoustic to phonetic association)



* How can we build a

From natural choices to
probability distributions

classifier on the basis of
these two points?




From natural choices to
probability distributions

e How can we build a
classifier on the basis of

these two points? \.

e A natural choice would be a
linear separator.

 Many formalisms (Bayesian,
regularization, minimum
description length or
structural risk
minimization ...) would
provide such a model.




From natural choices to
probability distributions

 Suppose we have some
more unlabeled data
available.

* |t looks self evident it would
be better to reevaluate the
previous choice.




From natural choices to
probability distributions
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Manifold regularization
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Manifold regularization

A technique for using the shape of a dataset to constrain the
functions that should be learned on that dataset.

The data to be learned do not cover the entire input space.

— For example, a genetic mutation detection system may not need to classify all
possible genetic variations, but only a subset that contain mutations.

The technique assumes the relevant subset of data comes
from a manifold and the function to be learned is smooth:

— data with different labels are not likely to be close together, and so
the labeling function should not change quickly in areas where there
are likely to be many data points.

These algorithms can use unlabeled data to inform where the
learned function is allowed to change quickly and where it is
not (extension of the technique of Tikhonov regularization).
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Learning from examples

Suppose labeled examples (x,y) are generated according to a
probability distribution P on X x R. Unlabeled examples are
x € X drawn according to the marginal distribution P, of P.

Can the knowledge of 7, be exploited for better function
learning (e.g., in classification or regression tasks)?

If there is no relation between 7 and the conditional P(y|x),
the knowledge of Py is likely useless.

Therefore, we will assume: if two points x,,x, €X are close in
the intrinsic geometry of P, then the conditional
distributions P(y|x,) and P(y|x,) are similar.

— The conditional probability distribution P(y|x) varies smoothly along
the geodesics in the intrinsic geometry of 2.
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Learning from examples

 We will make use of these geometric intuitions to
extend an established framework for function

learning.

A number of popular algorithms such as SVM, Ridge
regression, splines, Radial Basis Functions may be
broadly interpreted as regularization algorithms
with different empirical cost functions and
complexity measures.

 These features are chosen in an appropriate
Reproducing Kernel Hilbert Space (RKHS).
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Learning from examples

For a Mercer kernel K:Xx X 2 R, there is an associated
RKHS ., of functions X = R with norm ||.|| -

Given a set of labeled examples {(x,y,), 7 = 1,...,I}, the
standard framework estimates an unknown function by
minimizing

x " 1 I .
= argmin - D Vxiyi, £)+YI fllxs
feHy ©i=1

where V is some loss function
— i.e. squared loss (y; - f(x;))* for RLS, hinge loss function
max[0;1-y, f(x;)] for SVM.
Penalizing the RKHS norm imposes smoothness conditions on

possible solutions.
16



Learning from examples

e Every functionin 5—[Kthat minimises an empirical risk
function can be written as a linear combination of the kernel
function evaluated at the training points. (Representer
Theorem)

[
f(x) = ; 0, K (x;,x).

* Therefore, the problem is reduced to optimizing over the
finite dimensional space of coefficients «;, which is the
algorithmic basis for SVM, regularized least squares and
other regression and classification schemes.
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The Representer theorem

Assume that the penalty term || /||, is sufficiently smooth with respect to
the RKHS norm || f || «-

Then the solution f* to the optimization problem

) 1 ) )
= argmin - Y V(xi,vi, £) +all fllx + il £1I7.
feHr i—=1

exists and admits the following representation

[
f10) = X ok + || AR () dB(

where M= supp{Py } is the support of the marginal P, .

We can express the solution f directly in terms of the labeled data, the
(ambient) kernel K, and the marginal Py.

If P is unknown, the solution may be expressed in terms of an empirical

estimate of 2. 3



Unknown marginal distribution

In most applications 2 is unknown and we must attempt to
get empirical estimates of Py and ||.||,.

To get such empirical estimates it is sufficient to have
unlabeled examples.

In case Py is a compact submanifold M in R”, one natural

choice for || f||;is  [icar | Vacfl? dPx(x), where V4 is the
gradient of falong the manifold /M and the integral is taken
over the marginal distribution.

The optimization problem becomes

. 1 , )
7 = argmin 5 3V i )+l I+ [ [Vacf P aPe().
fere 1S xeM

The regularization term can be approximated on the basis of

labeled and unlabeled data using the graph Laplfcgian.
1



Unknown marginal distribution

* Given a set of / labeled examples {(x, y,) i=1,...,/} and a set of
u unlabeled examples {x, j/=/1,... ,/+u}, we consider the
following optimization problem:

. . 1 l [+u
f*=argmin~ > V(xi,yi, f )+vA||f||K+ Z (f(xi) = f(xj)) "Wy,
feHy i=1 ! T ij=1

1 ! o) YI T
—axgmin 3V (xiv0 £) + 1l FIR+ - ALE
feHy I; (u+1)~

* where W are edge weights in the data adjacency graph,
f=1fx),.... fix;.,)]', and L= D-Wis the graph Laplacian, with
diagonal matrix D elements D;; = Z?;‘{ Wi; .
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A remark

e The solution can be found in a finite dimensional
space.

* Itis possible to show that the minimizer has an

expansion in terms of both labeled and unlabeled
examples:

I4+u

f* (\‘) — ; (XiK(-\'iax)
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Support Vector Machine

* For SVMs, the following problem is solved:

1
min —
[

[
fe ,-:21(1 —vif (i) + + VI

* where the hinge loss is defined as:

(1-y f(x)), =max(0,1 —y f(x)) and the labels
vy, €{-1,+1}.
* Again, the solution is given by:

[
f(x) = ;a}‘K (x,x;).
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Support Vector Machine

 SVM problem can be equivalently written as:

nin i T
jomin 7. Z& Yl fll%

w@wﬁoxj()>l—§ i=1,....1
g,ZO 121,]

 We can take advantage of Lagrangian multiplier
technique.
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Support Vector Machine

 The SVM problem has a simpler quadratic dual program
in the Lagrange multipliers p = [B;,....p, " €E R’ :

Bt = max B~ 0B

p R i—1 =
[
subject to: Z iBi=0
i=1 —_
1
0<p; < 7

e Where:

Y = diag(vi,v2,...,¥

K
¢ = Y(—y) b
YB*

2y




Support Vector Machine

e The robustness of SVM relies in the strong
fundamentals of statistical learning theory

* The training relies on optimization of a quadratic
convex cost function, for which many methods are
available
— Packages for R, Matlab, Weka include SVM-Lite and

LIBSVM

O. Vapnik The nature of statistical learning theory. Springer, 1995. 55



Laplacian SVM

* By including the intrinsic smoothness penalty
term, we can extend SVMs by solving the

fT Lf.

Y
min — l + —|—

* By the Representer theorem, as before, the
solution to the problem above is given by:

[+u

F(x) = Z o K (x,x;).
i=1



Laplacian SVM

e Laplacian SVMs can be implemented by solving a
standard standard SVM, and using the solution to
obtain the coefficients of the linear system

Y1 —1 47T *
LK) "J°YpP".
(u+1)3 ) P

o= (2yal +2
* When y,=0, the SVM QP gives zero expansion
coefficients over the unlabeled data, whereas the
coefficients over the labeled data and the Q matrix
are as in standard SVM.
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A case study

* Two circumferences
1. Well separated
2. Poorly separated
3. Crossing

e Algorithms: SVM vs LapSVM

* No labeled points nearby the intersection!



SVM
100%

LapSVM
100%

_ Well separated



SVM LapSVM
100% 100%
L B B _ Well separated
SVM LapSVM
87.5% 88.1%
f B | Poorly separated



SVM LapSVM
100% 100%
L B B _ Well separated
SVM LapSVM
87.5% 88.1%
L 3 i | Poorly separated
SVM 1 LapSVM
75.7% | 85.4%
B B B ) Clrossing




GEPSVM
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* A binary classification problem can be formulated as
a generalized eigenvalue problem (ReGEC)

— Find x 'w, =y, the closest to 4 and the farthest from B:
il Ao =ey |
"1™ Bw=ey |’

O. Mangasarian, E. Wild Multisurface Proximal Support Vector Classification via Generalized
Eigenvalues. IEEE PAMI 2006.



GEPSVM
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* A binary classification problem can be formulated as
a generalized eigenvalue problem (ReGEC)

— Find x 'w, =y, the closest to 4 and the farthest from B:
il Ao =ey |
"1™ Bw=ey |’

O. Mangasarian, E. Wild Multisurface Proximal Support Vector Classification via Generalized
Eigenvalues. IEEE PAMI 2006.



The kernel trick for GEPSVM
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* A nonlinear embedding can be obtained with a
RBF kernel function:

— 2
1 x; xj”
(o

K(x;,x;)=e
- *BEach element of kernel matrix is:
KAL), =e °

r-[ATBT]T & sl

e And the model becomes: :
min H K(A,F)a)—ey H

“"Y | K(B,Tw-ey ||




GEPSVM regularization (ReGEC)
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min | KA D =ey | _ inIIK(4,0) ~el' [’ y]
u,y=0 _ 2 u,y=0 T
"NKB.Du=ey | "“"IKB,IL) —el'lu v

Let

M=[K(A,T) —e] [K(AT) —el,
N =[K(B,T) ~—e¢] [K(B,T) ~eé]
z=[u" y].

\»

* the equation becomes:

/
min 2 Mz
ZER;HI '

z Nz

* Rayleigh quotients of Mz = ANz.

M.R.G., C. Cifarelli, O. Seref, P. Pardalos. A Classification Method Based on Generalized Eigenvalue
Problems, OMS, 2007. r
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GEPSVM regularization (ReGEC)

2z (M+6N)z
min ——
270 2T (N + M) z

M and N main diagonals of K(4, T') and K(B, ')

This approach halves the execution time, still
providing similar accuracy results

* Regularization is a form of robustification

P. Xanthopoulos, M.R.G., PM Pardalos Robust generalized eigenvalue classifier with ellipsoidal
uncertainty AOR, 2014.
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Why another method?

ReGEC scales up with training set dimension

ReGEC is based on a generalized eigenvalue
problem => straight forward implementation
in many programming languages

— Python, Java, C++, Fortran...

ReGEC reduces to 1 line of code in many

problem solving environments (Matlab, R,
Weka,...)

It can be easily parallelized/distributed with
existing software (ScaLAPACK, GridSolve,...)



Semi-supervised ReGEC

Let L be the k-NN graph Laplacian built for the
whole training set (labeled + unlabeled points) I'.

L=D-W, where W is the adjacency matrix of the

n

graph and the diagonal matrix Dis s.t. di = > _;_; wj.
The matrix J is defined as J=[X, e].

M = [K(A,T), —e]" [K(A,T), —e], )
N = [K(B,T), —e]’ [K(B,T), —e], z=[u’,b]

. 2T (M + 61 z o zT(M+5N+c/ijTLJ)z
220 2T (N + 6M)z’ w— T z" (N+0M)z

Mario Guarracino ‘ 38




Well
separated

ReGec

svm LapSVM




Poorly
separated

' ReGec
- 92.22% 95.24%

4~

T svwm LapSVM
| 87.46% 88.10%




+ ReGec™
T 74.92%
6B i >3 -2 -1 |

L SVM S
1 75.71%

98.1%

Crossing



The algorithm

Input:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Output:

[ labeled examples {(x;,v;)}i_,,# unlabeled examples {x; 3’;’; o)
Estimated function f: R" — R

» Construct data adjacency graph with (I 4 u#) nodes using, for
example, k nearest neighbors or a graph kernel. Choose edge
weights W;;, for example, binary weights or heat kernel weights
W;j=e [l —xj 1?4

» Choose a kernel function K(x,y). Compute the Gram matrix
K,‘j = K(X,',Xj).

» Compute graph Laplacian matrix: L = D — W where D 1s a di-
agonal matrix given by D;; = Zl+“ Wi;.

» Choose Y4 and v;.

» Compute o0

» Output function f*(x) = 25:1‘ o K (x;,x).

http://www.jmlr.org/papers/volume7/belkin06a/belkin06a.pdf 4z




Efficiency Issues

Algorithms compute the inverse of a dense Gram matrix
which leads to O((/+u)?) complexity. This may be
impractical for large data sets.

In the case of linear kernels, we can directly write f (x) =
w!x and solve for the weight vector w using a primal
optimization method. This is much more efficient when the
data is low-dimensional.

For highly sparse data sets (e.g. in text categorization
problems), effective conjugate gradient schemes can be
used in a large scale implementation.

For the non-linear case, one may obtain approximate
solutions (e.g., using greedy, matching pursuit techniques)
where the optimization problem is solved over the span of
a small set of basis functions instead of using the full
representation.

43



Performance evaluation

Algorithm tested on IDA Repository datasets.

For each dataset, we consider 100 hold outs of the data in
train and test, and compute the mean and the standard
deviation of the classification accuracy.

For each of the 100 splits we averaged on 4 different
choices of a % of the training set used as unlabeled.

Mean classification accuracy for both the standard ReGEC
and for the ReGEC with Laplacian regularization.

Parameters tuned with a grid search during validation.

Mario Guarracino | 44



Performance evaluation

dataset unlab (%) || ReGEC | LapReGEC|| SVM LapSVM
0 72,79+4,5 — 71,91+4,8 —
breast 70 71,09+£3,8 | 71,73+3,8 || 71,28%£4,6 | 71,59+4,7
cancer 80 70,25+3,6 | 71,24+39 || 71,51+4,6 | 72,21+4,7
90 68,184+4,0 | 7091£3,8 |[71,91+4,4 | 72,064,0
95 67,04+4,5 71,1439 || 70,75+4,1 | 71,63+4,2
0 70,37+3,8 — 76,78+1,7 —
70 70,2942,7 | 73,94+1,8 || 65,68+£2,5 | 68,77+2,1
diabetis 80 69,12+2,7 | 73,47+1,7 || 66,17+2,3 | 69,20+1,8
90 67,38+2,6 | 72,38+=1,8 || 67,7725 | 71,36%+1,7
95 66,21+2,4 | 71,22+1,9 || 69,57£2,3 | 70,56£2,0
0 70,21+2,0 — 76,20£2,0 —
70 70,82+2,2 | 71,99+2,1 || 70,18%£2,0 | 70,18+2,0
german 80 71,06£2,1 | 72,10=2,0 (| 70,18£2,0 | 70,18+2,0
90 7041+24 | 71,20=1,9 || 70,18£2,0 | 70,18+2,0
95 70,02+2,1| 70,67+1,9 || 70,18£2,0 | 70,20£2,0
0 83,5343,1 — 81,65+3,1 —
70 82,17+3,3 | 82,0528 || 80,3934 | 75,0245,7
heart 80 81,404+3,2 | 81,55+2,8 || 79,65+3,1 | 77,78+4,3
90 78,85+3,5| 79,77+3,0 || 76,92£3,6 | 76,98+3,7
95 7526t4,6 | 77,7034 || 73,13£4,1 | 74,2134
0 90,09+3,7 — 94,85+2.3 —
70 90,36+2,6 | 90,91£2,4 ||92,30+2,1 | 92,514+2,1
thyroid 80 90,07+2,6 | 90,80+2,5 || 91,6023 | 92,89+2,3
90 91,684+2,7 | 91,80+£2,3 ||90,43+2,6 | 92,854+2,2
95 91,39+2,9 | 91,88+2,4 || 87,44+3,6 | 92,704+2,3
0 87,75+1,2 — 88,68+0,6 —
70 86,34+1,4 | 88,05+£0,5 || 79,59+3,9 | 82,82+1,6
waveform 80 84,17+1,7 | 87,59+0,6 || 81,24+3,3 | 82,88+2,0
90 82,34+2,0 | 86,37+0,9 || 81,38+2,6 | 81,60+2,7
95 82,244+1,6 | 85,09£1,0 | 80,54+2,6 | 80,53£2,6

45



Blood-platelets RNA-seq data

[ GEO accession number: GSE68086 }

Healthy Donors (HD) 55
Breast Cancer (BC) 39
Colorectal (CRC) 46
Glioblastoma (GB) 40
Lung (L) 59
TOTAL 239

* Raw input data matrix = [239 x 16347] (samples vs transcripts)
* Elements are the spanning exon read counts

| Best MG, Sol N, Kooi I, Tannous J et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based LAB
\ Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015 Nov 9;28(5): JGTP
1666-76. PMID: 26525104



Test settings

Three methods: ReGEC, LapReGEC and LapSVM
Three labeled percentages: 100%, 70% and 30%
100-fold cross validation

Training set= 80%, Test set=20% of the total samples.



LapRegec: Accuracy Results

[ Healthy vs Tumors }
Labeled ReGEC LapReGEC LapSVM
100 % 88+5 91+4 90+4
70 % 89+4 904 87+4
30 % 87+4 89+4 81+5
[ Breast Cancer vs Colorectal cancer }

Labeled ReGEC LapReGEC LapSVM

100 % 86.9+8 88.5%6 846+ 8
70 % 85.2%4.7 875 4 84.5+% 8
30 % 79.6£4.5 83.8 5 824+ 8

LAB
‘ GTrP




LapRegec: Accuracy Results

[ Breast Cancer vs Lung cancer }

Labeled ReGEC LapReGEC LapSVM

100 % 86.7+7 86.9+6 84.4+8
70 % 86.1+6 87.1 £5 84.3+8
30 % 82+45 86.0 +5 84.2+8
[ Glioblastome vs Lung cancer }
Labeled ReGEC LapReGEC LapSVM
100 % 90.4+6 9096 93.6*6
70 % 90.1%5 91.1 £5 93.5+6
30 % 89.9+45 91.0 £4.5 93.4+6

LAB
‘ GTrP




Open problems

Dependence of generalization error on the number
of labeled and unlabeled examples.

Intelligent techniques for model selection involves
choosing appropriate values for regularization
parameters.

Scalability issues are critical for large data (cubic
complexity).

Incremental semi-supervised learning.
Semi-supervised classification of graphs.

5o



Conclusions

We have seen a framework for data-dependent
geometric regularization.

It is based on a Representer theorem useful for
several algorithms for unsupervised, semisupervised
and fully supervised learning.

This framework brings together ideas from the
theory of regularization in reproducing kernel Hilbert
spaces, manifold learning and spectral methods.

Its implementation and numerical results show these
techniques can provide better generalization results.
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