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Motivation

Gathering and expansion of huge amounts of multiform data (Big
Data) poses new challenges in bioinformatics investigations

ML techniques are widely applied to bioinformatics in response to the
peculiarities and needs of these data

In many applications, biological data are constructed as biological
networks

Graph theory is as a solid ground for the representation and analysis
of biological heterogeneous data and their relations

Examples of biological networks are:
I molecular structure of proteins and RNAs
I metabolic networks
I genetic interaction networks
I cell signalling networks
I protein-protein interaction networks
I ...

... particularly used in uncovering complex disease mechanisms
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Motivation

Biological networks analysis poses the problem of reducing the
complexity of graphs through projections and/or transformation into a
more manageable data space.

Graph Embedding (GE) techniques pursue this scope, by translating
large and complex graphs into a reduced vector space called latent
space

We discuss GE methods applied to the task of Graph Classification,
i.e. the problem of identifying a categorization of graphs in a dataset

... we consider two case studies:
I MUTAG: molecular graphs 1

I KIDNEY: metabolic networks2

1publicly available at: https://networkrepository.com/
2developed by CDS lab ICAR-CNR, publicly available at:

https://github.com/cds-group/GraphDatasets
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Graph classification

Definition (Graph classification)

Given a set of graphs G = {G1, . . . ,Gm} and a set of given properties of
graphs Y = y1, . . . , yk , build (learn) a function:

f : G → Y

to predict the property of a graph

Example

G - set of molecular graphs

Y = {toxic, non-toxic}
f


 =?
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Graph classification and applications

An important task with practical applications in several domains:
I Bioinformatics and Cheminformatics: to predict the function of a

protein structure, if cells are cancerous or not, if a protein is enzyme or
not, checking the toxicity of a chemical compound

I Social network analysis: to provide online recommendations for a page
or user account, implement newsfeed and calculate page rank [14] -
ssers/pages are nodes and the interaction between them are edges

I Natural Language Processing: to categorize different documents based
on the structure of the text [11].

I Neuroscience: to analyse brain networks. Neurons are represented using
nodes and the connection between neurons are represented by edges [3]

I ...
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MUTAGenic molecular graphs

MUTAG3) is a dataset of nitroaromatic compounds
I nodes are atoms labeled by the type, while edges represent bonds

between the corresponding atoms
I 188 samples of chemical compounds
I classes refer to mutagenic effects of compounds on a specific gram

negative bacterium (Salmonella typhimurium)

mutag1 mutag2 mutag180 mutag188

class 0 class 1

3publicly available at: https://networkrepository.com/
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KIDNEY metabolic graphs

KIDNEY [8] is a dataset of metabolic models of tissue samples:
I 299 samples (150 Clear cell carcinoma, 90 Papillary cell carcinoma, 59

Solid tissue normal)
I raw data from Metabolic Atlas4

I ... enriched by Gene expression values from RNA sequencing data
(from NIH Genomic Data Commons data portal 5)

Human specific
metabolic models

Gene expression data Metabolic networks

+ =

4https://metabolicatlas.org
5https://portal.gdc.cancer.gov
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KIDNEY metabolic graphs

Metabolites are nodes involved in reactions
Edges connect metabolites involved in the same reaction:

I one as a reagent and the other one as the product
I multiple edges for enzymes catalyzing the same reaction
I .. reduced to one with a weight: avg of gene expression values

corresponding to enzymes

R1 : M1 + M2
E1E2−−−→ M3 + M4 R2 : M1 + M5

E1−→ M4 + M6

multigraph weighted multigraph weigthed graph

⇒ ⇒

metabolic model metabolic+gene data model reduced model
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Graph types

G=(V ,E ) is a graph with vertex set V= {v1, . . . , vn} and edge set
E , such that (vi , vj) ∈ E is a connection from node vi to node vj
Graphs can be:

I directed: every edge has a specific direction
I undirected: every edge has no direction
I homogeneous: all nodes and all edges are of the same type
I heterogeneous: multiple types of nodes and/or edges are allowed.
I knowledge graph: a directed heterogeneous graph
I weigthed: every edge is assigned witha numerical value (weight)
I binary: no weight associated with edges
I multigraph: multiple edges with the same end nodes

directed graph undirected graph knowlege graph weighted graph multigraph

M. Giordano (ICAR-CNR) Graph Embedding for Biological Networks September 13, 2021 10 / 26



Graph Embedding

Definition (Graph Embedding)

Given a set of graphs G = {G1, . . . ,Gm} with the same set of vertices V a
whole-graph embedding is a mapping function f : G → Rd where d ∈ N,
such that f preserves some proximity measure defined on G

Graph Embedding (GE) methods that translate large and complex
graphs into a reduced vector space, which is often called latent space.

Choosing an appropriate embedding dimension d is challenging but
necessary to generate embeddings applicable to a multitude of tasks

I small enough to be efficient and large enough to be effective (d � |V |)
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Embedding types for graphs

What aspects of the graph are we trying to represent:
I vertex embeddings: describe connectivity of each node. It targets node

prediction, reconstruction, and graph clustering
I edge/path embeddings: describe traversals across the graph. It targets

edge prediction, reconstruction, and graph clustering
I graph embeddings: encode the entire graph into a single vector. It

targets graph classification, graph matching
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Transductive vs inductive embedding

When talking about GE techniques, it is important to be aware of
another distinction:

I Transductive embedding: the vector representation (embedding) for a
new graph is obtained by re-applying the process jointly with previous
graphs. The embedding of older graphs changes when we perform the
embedding of a new graph

I Inductive embedding: the vector representation (embedding) for a new
graph is obtained by applying a pre-trained model of only on the new
graph. The embedding for older graphs does not change when we
perform the embedding of a new graph

The GE process can be unsupervised or supervised
I transductive supervised embedding methods cannot be used as models

for the prediction on unknown graphs
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Graph embedding methods

Graph kernels: similarity functions among graphs, typically
performing a transformation of graph structure to compare two graphs
(Weisfeiler-Lehman [13] Shortest-path [1], Randowm Walk [4]).

Statistical Representations: generate an one-off graph signature
vector, based on statistical properties, and use it in subsequent
inter-graph comparisons (FGSD [17], FeatherGraph [12])

Graph textualization: represent graphs as documents and reduce
graph similarity to a NLP problem. (Graph2Vec [10], GL2vec [16],
Netpro2vec [9])

Spectral Representations: use spectral graph theory as a solid
ground for graph comparison (NetLSD [15], IGE [2])

Graph Neural Networks: a family of neural networks models that
automatically learn embedding (features) for graphs: GNN, GCN,
GAE, ...
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Graph kernels

Definition

Given a set of graphs G = {G1, . . .Gm}, a function k : G × G → R is a
graph kernel if there is a Hilbert space H and a feature map φ : G → H
such that k(Gi ,Gj) = 〈φ(Gi ), φ(Gj)〉 for Gi ,Gj ∈ G

Where 〈, 〉 is an inner product

φ(G ) is the embedding of G in the feature space H
k(Gi ,Gj) is a similarity measure for graphs Gi ,Gj , e.g. a real number
equal to the inner product between Gi and Gj in the feature space H

I the feature space is assumed to be more computationally manageable,
either in terms of space dimensionality or algorithmic complexity

The kernel matrix (Gram) on the set of graphs G is defined as:
Kij = k(Gi ,Gj)

I used for graph classification,
I not used as graph-level representation (e.g., not applicable to graph

matching)
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Weisfeiler–Lehman subtree kernel

An iterative of graph relabeling algorithm [13]:
1 generation/sorting of multiset-label: node-rooted subtree patterns
2 label compression: multiset-label are encoded in new unique labels
3 graph relabeling: nodes are assigned with the new labels

Embedding vector: i-th element is the no. of occurrences of label i

G ⇒ ⇒ ⇒

G ′ ⇒ ⇒ ⇒

φ(G ) = [ ]⇒k(G ,G ′) = 〈φ(G ), φ(G ′)〉 = 11
φ(G ′) = [ ]
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Graph2Vec

The first approach to graph textualization is Graph2vec [10]:
1 graph relabeling by means of the Weisfeiler–Lehman algorithm
2 WL output is a sequence of node labels, i.e. a document representation

of graph structure (node-rooted subtree patterns):

φWL(G ) = [ ]
φWL(G ′) = [ ]

G ⇒ ⇒ ⇒

G ′ ⇒ ⇒ ⇒
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Graph2Vec

The first approach to graph textualization is Graph2vec [10]:
1 graph relabeling by means of the Weisfeiler–Lehman’s algorithm
2 WL output is a sequence of node labels, i.e. a document representation

of graph structure (node-rooted subtree patterns)
3 train the skip-gram model (PV-DBOW) on graphs (documents) to

maximize the probability of predicting a sub-graph that exists in the
input graph

4 the embedding of each input graph is the result of the hidden layer of
the skip-gram neural model
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Netpro2vec

Netpro2vec [9] differs from Graph2Vec in the way graphs are
transformed to documents:

1 graph relabeling by using a set of node-proximity metrics (NDD, TM)
2 the output is a sequence of node labels, i.e. a document representation

of graph structure (node proximity measures):
3 Train the skip-gram model (PV-DBOW) on graphs (documents) to

maximize the probability of predicting a sub-graph that exists in the
input graph

4 the embedding of each input graph is the result of the hidden layer of
the skip-gram neural model
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Node Distance

Definition (Node Distance)

the Node Distance Distribution (NDD) of node v in graph G = (V ,E ),
namely Nv (s), is the fraction of nodes reachable from v within a shortest
path of length s from node v

I maximal depth smax is set to the maximal diameter in all graphs
I nodes in disconnected components are considered at infinite distance

Example (node distance of mutag180)

NDDmutag180
=



s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

n0 0.11 0.22 0.22 0.22 0.33 0.00
n1 0.11 0.22 0.22 0.22 0.11 0.22
n2 0.11 0.22 0.33 0.22 0.22 0.00
n3 0.11 0.33 0.33 0.33 0.00 0.00
n4 0.11 0.33 0.56 0.11 0.00 0.00
n5 0.11 0.22 0.33 0.44 0.00 0.00
n6 0.11 0.33 0.22 0.33 0.11 0.00
n7 0.11 0.11 0.22 0.22 0.33 0.11
n8 0.11 0.11 0.22 0.22 0.33 0.11
n9 0.11 0.11 0.22 0.33 0.33 0.00


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Transition Matrix

Definition (Transition Matrix of order s)

The Transition Matrix of order s for graph G = (V ,E ), namely Tvw (s). is
the probability of a node w to be reached in s steps by a random walker
located in node v

T (1) is the adjacency matrix of graph G re-scaled by the degree of
each node (T (s) = T (1)s)

Example (Transition matrix of order 1 of mutag180)

TMs
mutag180

=



n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

n0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
n1 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
n2 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
n3 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.3
n4 0.0 0.0 0.0 0.3 0.0 0.3 0.3 0.0 0.0 0.0
n5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
n6 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.3 0.3 0.0
n7 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
n8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
n9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0


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Netpro2vec: graphs relabeling

Compute NDD distributions for all graphs in the dataset

For each node v , get s values ordered by decreasing values of Nv (s)

Keep only s values such taht Nv (s) is greater than a threshold (cutoff)

Every node is represented by a word, i.e. a string concatenation of
node id v with the selected s values

... the sequence of words is the graph document (same node order)

Example (NDD words for mutag180)

cut off = 0.25

NDDmutag180
=



s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

n0 0.11 0.22 0.22 0.22 0.33 0.00
n1 0.11 0.22 0.22 0.22 0.11 0.22
n2 0.11 0.22 0.33 0.22 0.22 0.00
n3 0.11 0.33 0.33 0.33 0.00 0.00
n4 0.11 0.33 0.56 0.11 0.00 0.00
n5 0.11 0.22 0.33 0.44 0.00 0.00
n6 0.11 0.33 0.22 0.33 0.11 0.00
n7 0.11 0.11 0.22 0.22 0.33 0.11
n8 0.11 0.11 0.22 0.22 0.33 0.11
n9 0.11 0.11 0.22 0.33 0.33 0.00


→

ndd n0 4
−
ndd n2 2
ndd n3 3 2 1
ndd n4 2 1
ndd n5 3 2
ndd n6 3 1
ndd n7 4
ndd n8 4
ndd n9 4 3
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Graph Auto-Encoders

Graph Auto-Encoders (GAEs) [6] learn a compact representation of a
graph and then re-construct it by using the decoder

I used to learn graph embeddings, hence for predicting embeddings for
un-seen graphs and to classify new graphs

I auto-encoders parameters are optimized by minimizing the average
reconstruction error over the training set:

θ∗, θ′∗ = arg min
θ,θ′

1

m

m∑
i=1

∥∥∥x(i) − z(i)
∥∥∥2

2
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Graph Convolutional Network

Graph Convolutional Networks (GCNs) [5] are adaptation of
Convolutional Neural Networks (used in image recognition) to the
graph domain

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
I H - hidden state (or node attributes when l = 0)
I D̃ - degree matrix
I Ã - adjacency matrix (with self-loops)
I W - trainable weights
I σ - activation function
I l - layer number

H0 is the network input (e.g. node attributes)

the embedding is the output of the last hidden layer
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Results

method MUTAG KIDNEY

GNN DAE - 90.33?

GK
WL-OA 84.59±9.59 55.51±2.35

SP 84.59±9.59 53.17±0.48†

Spectral NetLSD 86.48±6.57 53.84±6.20
Stat. FGSD 94.11±5.32 86.66±6.29

FeatherGraph 82.66±7.85 81.47±5.62

GT
Graph2Vec 80.99±7.63 53.17±0.48†

Netpro2vecndd 99.47±1.59 92.44±5.43
Netpro2vectm1 99.57±1.79 95.58±3.45

Table: Accuracy of 10-fold cross-validation

Graph2vec, NetLSD, WL-OA and SP fail on KIDNEY: they don’t use
weights (graphs have same topology with different edge weights)

Netpro2vec shows top-most performance in both case studies
I † is null classification
I .. see other results in [9]

?results reported in [7]
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Conclusions

Netpro2vec exploits node proximity measures to transform graphs into
documents, while preserving their significant structural properties

Netpro2vec relies on a Natural Language Processing method7 to
extract, from each document-based graph, the meaningful features in
terms of vector (embedding).

Graph embeddings produced by Netpro2vec can be used for multiple
ML tasks (clustering, classification, matching, etc.)

PROS:
I efficient embeddings in different graph data domains
I shallow architecture
I inductive learning

CONS: performance depends on:
I fine tuning of skipgram NN parameters
I appropriate choice of the proximity information (NDD, TM(s)) to

extract as well as its level of details

7skipgram model
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Considerations

Efficiency/scalability:
I due to a pair-wise similarity calculation, GKs suffer significantly from

computational bottlenecks (poor scalability)
I some GNNs are more efficient since they can directly perform graph

classification based on the extracted graph representations
I GNNs on small datasets may results in poor approx. (over-fitting)
I GT? methods are based on shallow learning: faster in training (less

parameters) wrt GNNs

Embedding properties:
I GNNs exploit more levels of embeddings of input data, which is

expected to result in more powerful feature extraction
I GT/GNNs embedding are learnable, while GK embedding are

deterministic (hand-crafted)
I GK embedding size grows with number of samples
I GT/GNN embedding size is fixed

F best choice: small enough to be efficient and large enough to be
effective in representing the graph proximity

?here discussed: Graph2vec, GL2Vec, Netpro2vec
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Thank you ...
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