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Abstract

Domain decomposition ideas have long been an essential tool for the
solution of PDEs on parallel computers. In recent years many research
efforts have been focused on employing recursively domain decompo-
sition methods to obtain multilevel preconditioners to be used with
Krylov solvers. In this context, we developed MLD2P4 (MultiLevel
Domain Decomposition Parallel Preconditioners Package based on PS-
BLAS), a package of parallel multilevel preconditioners that combines
Additive Schwarz domain decomposition methods with a smoothed ag-
gregation technique to build a hierarchy of coarse-level corrections in
an algebraic way. The design of MLD2P4 was guided by objectives
such as extensibility, flexibility, performance, portability and ease of
use. They were achieved by following an object-oriented approach
while using the Fortran 95 language, as well as by employing the PS-
BLAS library as basic framework. In this paper we present MLD2P4
focusing on its design principles, software architecture and use.

1 Introduction

It is well known that multigrid and, more generally, multilevel methods are
optimal for the solution of linear systems arising from the discretization of el-
liptic Partial Differential Equations (PDEs); here optimality is defined as the
ability to solve such systems employing a number of operations that scales
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linearly with the number of unknowns. Since the pioneering work of Achi
Brandt [4], multilevel methods have therefore been widely investigated and
successfully applied not only to linear systems arising from PDEs, but also
to a large variety of linear and nonlinear problems [5, 30]. In addition, mul-
tilevel domain decomposition methods are well suited for modern computing
systems, from large-scale distributed systems to current multi-core proces-
sors. The algorithmic scalability of multilevel methods, i.e. their capability
of keeping the number of iterations to get a fixed accuracy constant as the
number of subdomains increases, is a key feature to obtain scalable software
as the problem size and the number of processors increase. Furthermore,
the instrinsic hierarchy of multilevel methods allows to fit the hierarchy of
memories and of types of parallelism of emergent high-performance archi-
tectures, through a suitable combination of the number of levels and of the
size of the single-level numerical problem.

Many efforts have been devoted to the development of parallel software
implementing multilevel domain decomposition solvers and preconditioners,
with the multiple objectives of parallel efficiency, flexibility, extensibility,
general applicability and ease of use. In many cases this is carried out by
employing concepts and tools of object-oriented programming [2, 28, 27],
sometimes sacrificing runtime efficiency and easy interfacing with Fortran
legacy codes.

We present a package of parallel multilevel domain decomposition pre-
conditioners developed following an object-based design, translated into For-
tran 95 in order to preserve runtime efficiency with a resonable programming
effort and to allow immediate interfacing with Fortran codes. This package,
named MLD2P4 (MultiLevel Domain Decomposition Parallel Precondition-
ers Package based on PSBLAS), implements a suite of parallel algebraic
multilevel Schwarz preconditioners, based on smoothed aggregation, on top
of the PSBLAS linear algebra package [24]; the preconditioners can be used
with Krylov solvers available in the PSBLAS framework for the solution of
real or complex linear systems. The software architecture of MLD2P4 is the
result of a modular approach naturally inspired by the intrinsic hierarchy
of multilevel methods: data structures and methods of increasing complex-
ity are obtained by combining simpler components where different levels of
parallelism can be exploited to get high performance on a given problem
with the parallel machine at hand. In addition to the key objectives of
efficiency, flexibility and extensibility, the issues of portability and ease of
use have been central in the design of MLD2P4. “De-facto” standards for
sparse basic linear algebra operations and for data communications are the
basic layers of the architecture; few simple APIs are available to the users



to exploit the MLD2P4 functionalities at different levels of expertise. Fur-
thermore, single and double precision implementations of the package for
both real and complex matrices are available, that are accessed through the
same, overloaded, interface. Previous work concerning the use of MLD2P4
preconditioners on model problems and CFD applications has shown the
good performance of our software on various parallel computers [8, 13, 1].

The paper is organized as follows. In Section 2 we outline the algebraic
multilevel Schwarz preconditioners based on smoothed aggregation, in or-
der to provide a numerical background for the description of MLD2P4. In
Section 3 we discuss the main principles and choices driving the design of
our package. In Section 4 we present the software architecture of MLD2P4,
describing its main components and how they are combined, and providing
also implementation details. In Section 5 we show the basics for using the
MLD2P4 preconditioners with the Krylov solvers available in PSBLAS. In
Section 6 we present related software packages. Finally, in Section 7 we
report some conclusions and future work.

2 Background: algebraic multilevel Schwarz pre-
conditioners

Let us consider a linear system
Az = b, (1)

where A = (a;;) € R™*" is a nonsingular sparse matrix; for ease of presen-
tation we assume A is real, but the results are valid for the complex case
as well. Multilevel methods are often used to build preconditioners for the
matrix A, which are coupled with Krylov methods to solve system (1). Gen-
erally speaking, a multilevel method provides an approximate inverse of A
by suitably combining approximate inverses of a hierarchy of matrices which
represent A in increasingly coarser spaces. This is achieved by recursively
applying two main processes: smoothing, which provides an approximate in-
verse of a single matrix in the hierarchy, and coarse-space correction, which
computes a correction to the approximate inverse by transferring suitable
information from the current space to the next coarser one and vice versa,
and by computing, through smoothing, an approximate inverse of the coarse
matrix (see, e.g., [35, 37, 22]).

We outline a general framework for building and applying multilevel
preconditioners, focusing on the algebraic approach, which is the one we
employ. Let us assume as finest index space the set of row (column) indices of



Al— A, Ql=Q

set up St

for £k =1,nlev — 1 do
generate QF+! from QF
define P* (and RF = (P*)T)
compute A1 = R*AF Pk
set up SF+1

endfor

Figure 1: Build phase of a multilevel preconditioner.

A, Q=1{1,2,...,n}. An algebraic multilevel method generates a hierarchy
of index spaces and a corresponding hierarchy of matrices,

A=0>0>...oqMe, Al =4 4% ... AV,

by using the information contained in A, without assuming any knowledge
of the geometry of the problem from which A originates. A vector space R"*
is associated to QF, where ny, is the size of QF. In the following we use the
term contiguous for two index spaces, vector spaces or associated matrices
that correspond to subsequent levels k and k + 1 of the hierarchy.

For each k < nlev, the method builds two maps between two contiguous
vector spaces, i.e. a prolongation and a restriction operator

PR s B RE R —— R

it is common to choose R¥ = (P*¥)T. The matrix A*¥*! is computed by
exploiting the previous maps, usually according to the Galerkin approach,
ie.

ARl = RF AR PR, (2)

A smoother S* is set up (in a sense that will be clarified later), and is
used to compute products of type (A*)~1v, where (A*)~! is an approximate
inverse of AF; therefore, in the sequel we identify (S%)~! with (AF)~1. At
the coarsest level, a direct solver is generally considered to obtain the inverse
of A™ev. The process just described corresponds to the so-called build phase
of the preconditioner and is sketched in Figure 1.



vl =v;

! for each level k but the coarsest one, apply the smoother
! and restrict the residual
for k = 1,nlev — 1 do
gk = Gyt
k= gk Akyk
okl — REgk
endfor

! apply the smoother at the coarsest level
ynlev — Snlev,unlev

I for each level k but the coarsest one, interpolate y*,
! update the residual, apply the smoother and update y

for k =nlev —1,1,—1 do
yk = yk 4 pryk+l
k= ok Akyk
k
k

k

= Skpk
Yk =y 4k
endfor

w=y!

Figure 2: Application phase of a symmetrized multiplicative multilevel pre-
conditioner.

The components produced in the build phase may be combined in several
ways to obtain different multilevel preconditioners (see [35]); this is done
in the application phase, i.e. in the computation of a vector of type w =
M~1v, where M denotes the preconditioner, usually within an iteration of
a Krylov solver. An example of such a combination, known as symmetrized
multiplicative multilevel, or more generally V-cycle, is given in Figure 2.

In MLD2P4 the hierarchy of index spaces and the corresponding mapping
operators are built by applying a smoothed aggregation technique [40, 31,
6]. The basic idea is to build the coarse set of indices Q¥*! by grouping
the indices of QF into disjoint subsets (aggregates) and to define a simple
“tentative” prolongator Pf,, whose range should contain the near null space
of AF; the final interpolation operator P* is formed by applying a suitable

smoother to PF,_,, in order to obtain low energy coarse basis functions and

ent’



hence good convergence rates.

The algoritm implemented in MLD2P4 builds each aggregate by group-
ing the indices that are strongly coupled to a certain “root” index, and
computes

P* = (I —w(D*)"' A" Py, (3)

where PF . is a piecewise constant interpolation operator, w is a damping
parameter and D* is the diagonal part of A* (see [13, 14]). In the build
process we assume that the matrix A has a symmetric sparsity pattern.

The multilevel preconditioners implemented in MLD2P4 are of Schwarz
type, since the smoother S* used at each level k < nlev is a domain decom-
position Additive Schwarz (AS) preconditioner [12, 35, 10]. Therefore, the
multilevel preconditioners based on a multiplicative framework are referred
to as hybrid, i.e. multiplicative among the levels and additive inside any
single level.

In the AS methods the index space QF is divided into my, subsets QF
of size ny;, possibly overlapping. For each ¢ we consider the restriction
operator RF : R™ — R mapping a vector x¥ to the vector z¥ made
of the components of x* with indices in QF, and the prolongation operator
PF = (RF)T. The restriction and prolongation operators are then used to
build A¥ = RFA*PF  which is the restriction of A* to the index space QF.

(2
The classical AS preconditioner is defined as

(Shs) ™ = 3 PEAN IR,
=1

where Af is supposed to be nonsingular. We observe that an approximate
inverse of A¥ is usually considered instead of (A¥)~1. The setup of S¥g
during the multilevel build phase involves

e the definition of the index subspaces Qf and of the corresponding
operators Rf and Pf;

e the computation of the submatrices A¥;

e the computation of their inverses (usually approximated through some
form of incomplete factorization).

The computation of ¥ = Sﬁswk’, where w* € R, during the multilevel
application phase, requires

e the restriction of w¥ to the subspaces R™ i, i.e. wf = wak;



e the computation of the vectors zF = (AF)~ 1wk,
e the prolongation and the sum of the previous vectors, i.e. z¥ = 31" PF2E

Variants of the classical AS method, which use modifications of the restric-
tion and prolongation operators, are also implemented in MLD2P4. Among
them, the Restricted AS (RAS) preconditioner usually outperforms the clas-
sical AS preconditioner in terms of convergence rate and of computation
and communication time on parallel distributed-memory computers, and is
therefore the most widely used among the AS preconditioners [11, 21].

Direct solvers based on the LU factorization as well as approximate
solvers based on the ILU factorization or on the block-Jacobi iterative method
are implemented as “smoothers” at the coarsest level. More details on this
issue are given in Section 4.

3 Design principles

The basic design principle of MLD2P4 is the development of set of “objects”
(data structures and routines operating on them) that can be combined with
high flexibility by both the user and the developer. These objects should
be as general as possible (to allow for maximal reuse), within performance
and portability constraints. We briefly describe below how the basic design
objectives of MLD2P4 have been accomplished.

Flexibility and extensibility The implementation of MLD2P4 is based
on a modular approach. Objects of increasing complexity have been
obtained by composing simpler ones; to this aim, object-oriented fea-
tures of Fortran 95 for data abstraction and functional overloading
have been exploited. The requirement of having very general and
reusable objects has also naturally led to a layered software architec-
ture, providing increasingly more specific functionalities in going from
the bottom layer to the top one. In this framework, the implementa-
tion has been split between MLD2P4 and the Parallel Sparse BLAS
(PSBLAS) package, on the top of which MLD2P4 has been built. The
original implementation of PSBLAS (version 1.0) [25] provided parallel
versions of most of the Sparse BLAS computational kernels proposed
in [20] and auxiliary routines for the creation and management of dis-
tributed sparse matrices, to be used for building sparse iterative linear
algebra solvers on distributed-memory parallel computers. In design-
ing MLD2P4, whenever a basic data structure or method used by the
multilevel preconditioners resulted amenable to a more general use,



we defined it in PSBLAS, thus leading to an extension of the latter
package (version 2.0 and later, see [24]). More details on these issues
are given in Section 4.

Portability MLD2P4 has been written in the Fortran 95 language stan-
dard coupled with the extensions of the ISO Technical Report TR
15581; coverage of this language level is nowadays universal among the
compilers commonly in use, including the free Gnu Fortran compiler
(as of version 4.2). The inter-processor communication has been im-
plemented by using the message-passing environments BLACS (Basic
Linear Algebra Communication Subprograms) [18], and MPI (Message
Passing Interface) [36], which are considered “de-facto” standards.

Indeed, PSBLAS provides overloaded interfaces to the communica-
tion operators commonly employed in the context of sparse computa-
tions and in the context of mesh-based algorithms, as well as common
send /receive operations and environment inquiry; thus, the PSBLAS
user will rarely, if ever, need to invoke explicitly a BLACS or MPI
primitive. The interface overloading allows the compiler to check aand
prevent xcommon programming errors such as mismatch between data
types and communication routines. The BLACS layer has been used
internally because it provides a convenient model of communication
in which the user is relieved from the buffer-handling chores that are
often necessary for point-to-point communications; this layer provides
a “fire and forget” model that relies on internal buffering, while sac-
rificing some performance for convenience. Direct access to the MPI
layer is still possible when needed, and is indeed employed in some
internal routines; for instance, the most critical communication oper-
ation, the PSBLAS halo data exchange [24], by default makes direct
use of MPI send/receive operators, and many data setup routines in
both PSBLAS and MLD2P4 call MPI global communication operators
to provide maximum performance.

Effective memory management Fortran 95 allows dynamic memory al-
location, which is a very useful feature when dealing with large-scale
problems. Thanks to the TR 15581 extensions, arrays with the ALLOCATABLE
attribute can be used, instead of POINTER variables, as dummy argu-
ments and as components of derived data types. ALLOCATABLE arrays
have two useful features:

e their association status is guaranteed to be consistent;



e they only point to contiguous memory (as opposed to pointers,
which may implicitly specify a stride).

Therefore, ALLOCATABLE arrays are advantageous for memory man-
agement, since they avoid the generation of memory leaks in a user
program (barring compiler bugs); furthermore, they enable a very sim-
ple memory release scheme based simply on the DEALLOCATE state-
ment. Finally, ALLOCATABLE arrays tend to give better performance,
because the memory contiguousness helps the compiler optimizers pro-
duce more efficient machine code and because they tend to avoid mem-
ory aliasing.

High performance This objective has been pursued at both the imple-
mentation and the algorithmic level, as explained below. The re-
sults obtained on various large-scale linear systems, arising from model
problems as well as from real applications [8, 13, 1], show the effec-
tiveness of our approach.

e Other object-oriented languages often encourage programming
styles placing very substantial runtime requirements and great
care must be exercised in their usage in connection with nu-
merical codes where the execution time is an important feature.
Conversely, Fortran 95 has been designed to enable compilers to
generate highly optimized executable codes. Thus by choosing
this language we are using many object-oriented features while
maintaining a good runtime efficiency with limited programming
effort.

e The internal representation of sparse matrices in PSBLAS is a
key element of performance handling for two reasons:

— the storage layout is not tied to a single representation method,
thus it can easily adapt to different computing architectures;
indeed releated research efforts are devoted to finding new
storage schemes for multiple architectures [9];

— the storage layout may change during program execution,
providing optimal support to different phases of the com-
putation; this is essentially an implementation of the State
design pattern [26].

e It is well known that one-level Schwarz preconditioners are scal-
able with respect to a single iteration of the preconditioned solver,



but they yield a convergence rate that deteriorates as the num-
ber of submatrices increases. The use of a coarse-space correction
allows to obtain optimal preconditioners, i.e. such that the num-
ber of iterations is bounded independently of the number of the
submatrices; however it may substantially affect the parallel per-
formance because of the cost of solving, at each iteration, the
coarse-level system. A possible remedy is the approximate solu-
tion of the coarse-level system, which is generally less expensive,
but also less effective in terms of convergence rate; this can be
obtained by recursively applying the coarse-level correction in a
multilevel framework. In practice, finding a good combination of
the number of levels and of the solver to be applied at the coars-
est level is a key point in achieving high performance in a parallel
environment. The choice of these two features is generally de-
pendent on the characteristics of the linear system to be solved
and on the characteristics of the parallel computer. Therefore,
MLD2P4 has been designed to allow the user to experiment with
different solutions, in order to find the “best” preconditioner for
the problem at hand. It provides different coarsest-level solvers,
i.e. sparse distributed and sequential LU solvers, as well as dis-
tributed block-Jacobi ones, with ILU or LU factorizations of the
blocks; furthermore, no limitation on the number of levels is im-
posed, except the obvious one that no more levels are considered
if the coarsest one is such that the aggregation algorithm applied
to it does not change the index space.

Ease of use The MLD2P4 functionalities can be accessed through a set
of uniform and easy-to-use APIs, that allow for different levels of ex-
ploitation of the package: non-expert users can easily select default
preconditioners, while expert users can choose among various types of
multilevel preconditioners and fine tune their application parameters.
Note also that the use of Fortran 95 allows easy interfacing of MLD2P4
with Fortran 77 legacy codes; the PSBLAS facilities for sparse matrix
data management can be used to build the distributed matrix data
structure to which the MLD2P4 has to be applied.

4 Software architecture

The software architecture of MLD2P4 is the result of a modular approach
based on object-oriented design principles, where data structures and “meth-
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ods” of increasing complexity are obtained by combining simpler compo-
nents. This hierarchical view nicely reflects the hierarchical nature of the
underlying multilevel methods. A description of the fundamental compo-
nents of MLD2P4 and of their interactions within the software package fol-
lows. We note that the final software architecture of MLD2P4 described here
has evolved considerably from the original two-level version of the package
described in [8].

4.1 Basic components

Following the description of the multilevel preconditioners in Section 2, we
identify three basic components:

e matrices,
e index spaces, and their associated vector spaces
e maps between pairs of vector spaces.

Furthermore, we distinguish between intra-level maps, which act within a
single level of the multilevel hierachy, and inter-level maps, which transfer
information between contiguous levels.

At each level k, the matrix A* is distributed among the processors in
a general row-block fashion, with possibly overlapping rows, and the re-
lated vectors are distributed accordingly. Two main PSBLAS data struc-
tures are used to hold the information concerning A*: the sparse matriz
psb_Tspmat_type and the communication descriptor psb_desc_type (note
that T denotes s, d, c, z, according to the real/complex, single/double preci-
sion version of MLD2P4).! The sparse matrix contains the nonzero entries
of the matrix rows assigned to the local processor and the corresponding
row and column indices, according to some representation format, that may
be changed during the computation to achieve efficiency in the operations
involving the matrix. The commmunication descriptor includes information
needed for handling communication operations pertaining to the implemen-
tation of basic sparse matrix computations, such as matrix-vector products.
It is logically associated with the sparsity pattern of the matrix as dis-
tributed on the parallel machine, and stores the local index space Qf’ , which
identifies the submatrix assigned to each processor, as well as the indices
of the adjacent matrix rows owned by other processors (halo indices) and

!Actually, at the coarsest level A® may be also replicated on each processor, as ex-
plained in Section 4.3, but this is managed through the same data structures.
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other information about the global matrix. We note that while the interface
to the communication descriptor remained stable with respect to older ver-
sions of PSBLAS; its internal implementation has been largely rewritten in
PSBLAS 2.3, to provide improved performance for very large index spaces,
corresponding to order of millions of matrix rows/columns. For details on
the PSBLAS data structures, the reader may refer to [24]. Note that, since
the intra-level maps sz and Rf closely follow the sparsity pattern of the
associated matrix at level k, they can rely on the existing communication
descriptors to hold their communication requirements.

In order to store all the information related to inter-level maps P* and
RF we defined a new data structure, the linear map. This data structure was
implemented in PSBLAS because the concept of a linear mapping among
different vector spaces is useful in more general contexts beyond algebraic
multigrid, e.g. in adaptive grid-refinement methods for PDE computations.
The linear map uses the sparse matrix structure, to hold the matrix rep-
resentation of the mapping among two vector spaces X and Y, as well as
the communication descriptor structure, to store the information needed to
properly exchange the relevant data. More precisely, the linear map type
has the following definition:

type psb_Tlinmap_type

integer, allocatable :: itd_data(:), iaggr(:), naggr(:)
type(psb_desc_type), pointer :: p_desc_X=>null(), p_desc_Y=>null()
type (psb_desc_type) :: desc_X, desc_Y

type (psb_Tspmat_type) :: map_X2Y, map_Y2X

end type psb_Tlinmap_type

The sparse matrices map_X2Y and map_Y2X hold the mapping from a space
X to a space Y and vice versa; in the MLD2P4 case they hold the maps P*
and R*, respectively. The two items p_desc_X and p_desc_Y are pointers to
the descriptors of the index spaces associated to X and Y’; in the MLD2P4
case they are the descriptors of the fine and the coarse index spaces 2F
and QFt!l. In the multilevel algorithms the use of these pointers allows
memory savings since the descriptors of the maps are the same descriptors
associated to the matrices A* and A**1; in MLD2P4 these memory savings
may be quite substantial, thus justifying the implementation of this special
case. On the other hand, when the linear maps are completely general, it is
necessary to have independent descriptors desc_X and desc_Y for the cor-
rect application of the maps. Note also that we explicitly store both the
prolongation and the restriction operators, even though in MLD2P4 they

12



are the transpose of each other. This choice is due to reasons of both ef-
ficiency and generality; for instance, this allows an easy path to planned
extensions of MLD2P4 with Petrov-Galerkin variants of the smoothed ag-
gregation technique, where the inter-level restriction operator is not the
transpose of the prolongation [34]. Finally, iaggr and naggr hold inter-
mediate information on the inter-level maps, i.e. information identifying the
tentative prolongator PF, ., while it_data holds information on the internal

status of psb_Tlinmap_type.

4.2 Preconditioner data structures

We designed two main preconditioner data structures to store all the infor-
mation concerning the preconditioners implemented in MLD2P4:

e the base preconditioner, holding the preconditioner S* at a single level
k;

e the multilevel preconditioner, holding the hierarchy of preconditioners
Sk, matrices A¥ and maps P* and R*, needed to apply a general
multilevel preconditioner.

We put these data structures in MLD2P4 since they are specific to the
multilevel preconditioners.

In order to identify the components of the base preconditioner we took
into account the needs of the preconditioners provided as smoothers in
MLD2P4:

e Diagonal scaling. This simple preconditioner only requires the diago-
nal entries of the local matrix to be preconditioned.

e Block Jacobi. This preconditioner is a special case of AS precondi-
tioner and requires the computation of a (usually incomplete) LU
factorization of the diagonal block of the local part of matrix to be
preconditioned, that is assigned to each processor; thus we need to
store the L and U factors. Furthermore, we may need to store the
part of the local matrix that is outside the block diagonal, to apply
multiple block-Jacobi sweeps.

e Additive Schwarz. The variants of the AS preconditioner require the
same components as the Block Jacobi preconditioner, plus a suitable
use of the communication descriptor of the matrix to be precondi-
tioned, to apply the intra-level maps.

13



We note that the local factorizations required by the block-Jacobi and AS
preconditioner may be implemented inside MLD2P4 or provided by external
packages. Thus, the base preconditioner data structure must hold the L. and
U factors computed by MLD2P4 as well as some hook for external packages.

Taking into account the previous considerations, we came to the following
definition of the base preconditioner:

type mld_Tbaseprec_type

type (psb_Tspmat_type), allocatable :roav(s:)
IntrType(kind_parameter), allocatable :: d(:)

type (psb_desc_type) :: desc_data

integer, allocatable :: iprcparm(:)

real (kind_parameter), allocatable :: rprcparm(:)

integer, allocatable :: perm(:), invperm(:)

end type mld_Tbaseprec_type

The sparse matrix av and the array d contain the lower and upper factors
and the diagonal of the ILU factorizations computed for the block-Jacobi and
AS preconditioners (note that IntrType denotes the real or complex data
type and kind_parameter denotes the associated kind, according to the
real/complex, single/double precision version of MLD2P4 under use). The
factorizations from external packages are linked through pointers to external
data structures provided by the packages; these (C) pointers are stored inside
iprcparm. This is not a completely satisfactory solution, because it implies
a dependency on the interlanguage call mechanism; a widespread availabil-
ity of the ISO_C_BINDING interface? will enable a standard solution to this
issue. The communication descriptor desc_data holds the information con-
cerning the index space and the maps associated to the local matrix Af. The
arrays iprcparm and rprcparm contain integer and real parameters identi-
fying variants of the related preconditioner, while perm and invperm include
information about possible row/column permutations applied to Af ,e.g. to
improve the performance of the factorization algorithms. We observe that
the base preconditioner data structure is flexible enough to support other
domain decomposition preconditioners, such as the multiplicative Schwarz
ones.

In order to build the multilevel preconditioner data structure, we first
packed into an intermediate data structure, mld_Tonelev_type, all the in-
formation needed to apply the smoothing and the coarse-space correction at
a generic level k:

2The C binding module is already available in some compilers, including the Gnu
Fortran compiler 4.3.
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type mld_Tonelev_type

type(mld_Tbaseprec_type) 1 prec

integer, allocatable :: iprcparm(:)

real (kind_parameter), allocatable :: rprcparm(:)

type (psb_Tspmat_type) 11 ac

type (psb_desc_type) :: desc_ac

type (psb_Tlinmap_type) 11 map

type (psb_Tspmat_type), pointer :: base_a => null()
type(psb_desc_type), pointer :: base_desc => null(Q)

end type mld_Tonelev_type

Here prec holds the local part of the base preconditioner at the current
level; iprcparm and rprcparm contain parameters defining the multilevel
framework; ac is the local part of the matrix associated to the current level,
built from the contiguous finer matrix, and desc_ac is its communication
descriptor; map is the linear map type containing the inter-level restriction
and prolongation operators at the current level. We note that, in the multi-
plicative variants of the multilevel cycle, the residual vector % = v* — AFyF
has to be computed. For all levels but the finest A¥ is stored in the related
data structure ac during the build phase of the preconditioner; at the finest
level A* is the matrix A, which may be very large, thus it would be highly
impractical to make a copy of it inside the preconditioner structure. There-
fore, we decided to have a pointer base_a that is associated with A* at all
levels. This choice gives the following advantages:

e the code that computes the residual and applies the preconditioner is
uniform at all levels, thanks to the additional indirection in the data
structure;

e the matrix A is implicitly used without the need to pass it explicitly,
which would be redundant for those preconditioners that do not use
the residual;

e it is never necessary to perform a copy of A.

The same considerations apply to base_desc, which points to desc_ac ex-
cept at the finest level, where it points to the descriptor associated to A.

Then we defined the multilevel preconditioner as an array of m1d_Tonelev_type
data types:

type mld_Tprec_type
type (mld_Tonelev_type), allocatable :: precv(:)
end type mld_Tprec_type
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4.3 Building the preconditioners

The implementation of the build phase of the multilevel preconditioners is
based on the implementation of the four steps specified inside the loop in
Figure 1.

We first describe the construction of the base preconditioner S*, which
is the “core” around which the multilevel preconditioner is built. This is
managed by the mld_baseprec_bld routine, which performs three main
steps:

e construction of the communication descriptors corresponding to the
overlapping matrices Af from the descriptors associated to the original
non-overlapping row-block distribution of A*:

e retrieval of the matrix rows needed to form the matrices A¥;
e factorization of these matrices.

The first two steps required an extension of the methods available in PS-
BLAS for the manipulation of descriptors and sparse matrices (essentially
for gathering index lists and matrix rows); these functionalities were put
in PSBLAS because they can be used to build extended stencils in a more
general context, such as data communications in parallel PDE computa-
tions. A more detailed description of these steps can be found in [7] (with
some differences due to the obvious evolution of MLD2P4). Various stan-
dard incomplete factorizations, such as ILU(p), MILU(p) and ILU(¢, p) [32],
were implemented in MLD2P4 to perform the last step; we also developed
interfaces to the sparse LU factorizations provided by UMFPACK [15] and
SuperLU [16].

Note that all of the previous factorizations may be also used directly as
(approximate) solvers at the coarsest level; this is achieved by replicating
the whole matrix A™€" on all the processors. An interface to the sparse
distributed LU factorization from SuperLU_DIST [17] is also provided, that
may be used as coarsest-level solver when the matrix A™€V is distributed.

As described in Section 2, the remaining steps of the build phase of
a multilevel preconditioner are performed applying a smoothed aggrega-
tion technique. The coarse index space QFt! is generated by the routine
mld_aggrmap_bld, by using a decoupled aggregation, in which every pro-
cessor independently aggregates the subset of indices assigned to it in the
non-overlapping row-block distribution of the current-level matrix. This
approach does not require any data communication, thus allowing a sub-
stantial time saving with respect to other parallel aggregation algorithms;
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on the other hand, it may produce nonuniform aggregates near the bound-
ary indices, i.e. the indices held by a processor that are halo indices for other
processors, and is dependent on the number of processors and on the initial
partitioning of the matrix A. Nevertheless, this approach has been shown
to produce good results in practice [39]. We also note that the modularity
of the MLD2P4 architecture allows for immediate extensions with different
coarsening strategies.

The construction of the prolongation and restriction operators P* and RF
and of the coarse matrix A*+! is implemented in a single routine, m1d_aggrmat_asb.
Indeed, the setup of the linear map data type holding P* and R* requires the
knowledge of the communication descriptors associated to A¥ and A**!, and
the descriptor of A**! is assembled when A**! is computed; thus we could
not separate the construction of the coarse matrix from that of the related
maps. In order to compute P¥ (see (3)), R¥ = (P¥)T and A**! (see (2)), we
had to extend the set of basic sequential sparse matrix operators available
in PSBLAS with routines performing the sparse matrix diagonal scaling,
the sparse matrix transpose and the sparse matrix by sparse matrix mul-
tiplication. The last two operations were implemented by integrating into
PSBLAS the SMMP software [3]. It is worth noting that, even though the
sparse matrix multiplication is not considered in the SBLAS standard, the
possibility of its future inclusion has been foreseen by the BLAS Technical
Forum [19]. We observe also that m1d_aggrmap_bld and mld_aggrmat_asb
were packed into a single routine, m1d_coarse_bld, to provide the coarsen-
ing functionality as a whole.

The construction of the multilevel preconditioners is implemented in
mld mlprec_bld by repeatedly callingmld_coarse_bld and m1d_baseprec_bld,
according to the algorithmic framework in Figure 1, and passing to these
routines the data structures pertaining the level at which they are called.

4.4 Applying the preconditioners

As for the build phase, the application of the multilevel preconditioners
is the result of the combination of some basic operations, i.e. smoother
application, residual computation, restriction/prolongation and vector sum
(see Figure 2).

The smoothers available in MLD2P4 are used through the routine mld_baseprec_-
aply. This is essentially an interface to mld_as_aply, which applies the AS
preconditioners; additionally, it also performs the diagonal preconditioning.

The original implementation of mld_as_aply is discussed in [7]. Since then,
several local factorization algorithms have been added (see Section 4.3); fur-

17



thermore, the routine has been also modified to manage the solution of the
coarsest-level system when this is replicated on all the processors. Shortly,
the first and the third step of the application of the AS smoother S* (see
Section 2) are performed through two PSBLAS routines: psb_halo, which
gathers, on each processor, the entries of wf that correspond to the overlap-
ping rows of the local submatrix Af, and psb_ovrl, that sums the entries of
2 that are held by multiple processors. The computation of 2F = (A¥)~ 1wk
is performed by mld_sub_aply which applies the triangular solves involv-
ing the L and U factors obtained during the build phase. We note that
mld_baseprec_aply applies the smoother S* through a general operation
of type

y = By + aop(S*)z, (4)

where x and y are vectors, and « and [ are scalars and op(S*) is the precon-
ditioner or its transpose or its conjugate transpose (depending on the real or
complex version of MLD2P4). This allows to perform as a single operation
the smoothing and sum steps in the second loop of Figure 2; furthermore,
the transpose of S* is used when the preconditioner is applied with Krylov
methods requiring the matrix transpose.

The application of the inter-level restriction and prolongation operators
RF and P* was put in PSBLAS, where the linear map data structure holding
the operators is defined. It is implemented in psb_map_X2Y, which computes

y=pPy+alz,

where T = R* or T = P*, by combining PSBLAS distributed sparse matrix
operators. We note that the choice of developing a routine for the application
of a pair of general linear maps allows to easily manage the extension of
MLD2P4 with other inter-level restriction and prolongation operators.

Finally, the computation of the residual 7* is implemented through the
PSBLAS routine psb_spmm, which computes the sparse matrix by dense
matrix (or vector) product.

The previous computational kernels are combined in m1d_mlprec_aply
to implement different multilevel frameworks, i.e. the additive one and the
multiplicative variants with pre-, post- or two-side-smoothing. As the smooth-
ing application routine, mld_mlprec_aply applies a multilevel precondi-
tioner M in the general form (4) (with the obvious substitution of S* with
M). This might be useful in future extensions of MLD2P4, e.g. in the case
of repeated application of a multilevel cycle to a given vector.
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4.5 User interface

The MLD2P4 preconditioners are made available to the user through five
interface routines, that encapsulate all the functionalities needed to build
and apply any base or multilevel preconditioner implemented in the package.
A detailed description of these routines can be found in [14]; we briefly
describe here the main tasks performed by them, while in Section 5 we
report fragments of code showing their use.

The routine mld_precinit allocates the mld_prec_type data structure
that will hold the preconditioner; it also initializes it, according to a precon-
ditioner type specified by the user, by setting iprcparm and rprcparm with
default values. Four basic preconditioner types can be chosen: diagonal,
block Jacobi, Additive Schwarz and multilevel (for their defaults the reader
may refer to [14]). We note that, although the block Jacobi preconditioner
is a special case of the AS one, it is made directly available as a separate
type, to help non-expert users. The same reasoning applies to AS precon-
ditioners, that may be also obtained by setting to 1 the number of levels
of the corresponding multilevel preconditioners. A companion routine of
mld_precinit is mld_prec_free, for deallocating the preconditioner data
structure when the preconditioner is no longer used.

The defaults of any preconditioner type may be changed by the m1d_precset
routine, by setting a variety of parameters. These parameters have been
logically divided into four groups, i.e. parameters defining the general mul-
tilevel framework, the base preconditioner, the aggregation algorithm, and
the coarse-space correction at the coarsest level. Note that mld_precset
checks also the consistency of the values of the parameters, to avoid wrong
or unsupported choices.

Once the preconditioner data structure has been allocated and initial-
ized, it may be built by mld_precbld, according to the user choices. This
routine calls mld_baseprec_bld if the preconditioner selected by the user
is a base preconditioner, and mld_mlprec_bld otherwise. Analogously,
mld_precaply applies the selected preconditioner by calling m1d_baseprec_aply
or mld_mlprec_aply. We note that when MLD2P4 is used with a Krylov
solver from PSBLAS, mld_precaply is called within the PSBLAS routine
psb_krylov.

Finally, a utility routine, mld_precdescr, is also available for printing a
detailed description of the preconditioner that has been set up.

A graphical representation of the software architecture described so far is
provided in Figure 3, where the different layers resulting from the modu-
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Base preconditioner data structure
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Basic components
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BLACS

MPI

Figure 3: Software architecture of MLD2P4.

lar design approach and the splitting between MLD2P4 and PSBLAS are

outlined.

5 Using MLD2P4

MLD2P4 allows the user to build and apply, with the Krylov solvers included
in PSBLAS, any multilevel preconditioner resulting from a combination of

the following elements:

e the base preconditioner, i.e. the classical AS preconditioner or variants
of it, with arbitrary overlap and a local LU or ILU solver chosen among
the available ones (see Section 4.3);

e the multilevel framework, i.e. additive or multiplicative with pre-, post-

or two-side smoothing;

e the coarsening strategy, i.e. the decoupled smoothed aggregation algo-
rithm, with a selected aggregation threshold to identify strongly con-
nected indices, and a selected damping parameter for the smoothed

prolongator;

e the layout of the coarsest-level matrix, i.e. distributed or replicated;
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e the coarsest-level solver, i.e. any of the sequential or distributed LU

or ILU solvers mentioned in Section 4.3, or the block-Jacobi solver
with LU or ILU on the blocks; the SuperLU_DIST and block-Jabobi
solvers can be applied if the coarsest-level system is distributed, while
the other solvers can be applied if the system is replicated.

The setup and the application of a preconditioner is obtained by performing
a few simple steps, through the user interface described in Section 4.5:

1.

2.

6.

declare the preconditioner data structure mld_Tprec_type;

select a preconditioner type (diagonal, block Jacobi, additive Schwarz,
Multilevel), and allocate and initialize accordingly the preconditioner
data structure, by using the routine ml1d_precinit, which also sets
defaults for the selected type;

modify the selected preconditioner type by properly setting precondi-
tioner parameters, through m1d_precset;

build the preconditioner for a given matrix, via m1d_precbld;

apply the preconditioner at each iteration of a Krylov solver, through
mld_precaply (this step is completely transparent to the user, since
mld_precaply is called by the Krylov solvers implemented in PS-
BLAS);

free the preconditioner data structure, through mld_precfree.

The code fragment reported below shows how to set and apply the default
multilevel preconditioner (real double precision version), which is a two-level
hybrid preconditioner with post-smoothing. The smoother is RAS with
overlap 1 and the ILU(0) factorization of the local blocks; the coarsest-level
system is distributed among the processors and is approximately solved by
using four block-Jacobi sweeps, with the LU factorization of the blocks via
UMFPACK.

use psb_base_mod
use psb_krylov_mod
use mld_prec_mod

! sparse matrix
type(psb_dspmat_type) :: A
| sparse matrix descriptor
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type (psb_desc_type) :: desc_A

! preconditioner
type(mld_dprec_type) :: P

! right-hand side and solution vectors
real (psb_dpk_), allocatable :: b(:), x(:)

! Build matrix A and right-hand side b

I initialize the default multi-level preconditioner
call mld_precinit(P,’ML’,info)

! build the preconditioner
call mld_precbld(A,desc_A,P,info)

I set the solver parameters and the initial guess

| solve Ax=b with preconditioned BiCGSTAB
call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

! deallocate the preconditioner
call mld_precfree(P,info)

We see that the preconditioner is chosen by simply specifying ML’ as sec-
ond argument of m1d_precinit (a call to mld_precset is not needed) and is
applied with the BICGSTAB solver provided by PSBLAS. We also note that
the modules psb_base_mod, m1d_prec_mod and psb_krylov_mod, contain-
ing definitions of data types and interfaces to MLD2P4 or PSBLAS routines,
must be used by the calling program.

Other versions of multi-level preconditioners can be obtained by chang-
ing the default values of the preconditioner parameters. The code fragment
reported below shows how to set up a three-level hybrid Schwarz precon-
ditioner, which uses block Jacobi with ILU(0) on the local blocks as post-
smoother, and solves the coarsest-level system, which is replicated on the
processors, with the LU factorization from UMFPACK.

call mld_precinit(P,’ML’,info,nlev=3)
call_mld_precset(P,mld_smoother_type_, ’BJAC’,info)
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call mld_precset(P,mld_coarse_mat_, ’REPL’,info)
call mld_precset(P,mld_coarse_solve_, ’UMF’,info)

The number of levels is specified by using mld_precinit; the other precon-
ditioner parameters are set by calling m1d_precset. Note that some features
of the preconditioners are not specified through m1d_precset (e.g. the type
of multilevel framework or the ILU(0) factorization used by the block Jacobi
smoother), since they are set by default when m1d_precinit is called.

6 Related work

The large interest toward using algebraic multilevel preconditioners in the
solution of large-scale linear systems has led to their implementation in
various parallel software packages.

Algebraic multilevel preconditioners can be built and applied within
PETSc [2], which provides a suite of data structures and of routines (Krylov
solvers, preconditioners, nonlinear solvers and support routines) for the par-
allel solution of scientific applications modeled by partial differential equa-
tions. It is written in C, with an object-oriented programming style, and
uses MPI for message passing communications. PETSc has been developed
for C/C++ users, but provides also a Fortran 77/90 interface that allows
to access most of its functionalities. However, it includes limited support
for direct use of Fortran 90 pointers. One-level AS preconditioners are di-
rectly available to users; conversely, multilevel preconditioners can be built
by using PETSc facilities, but this require the user to provide at least the re-
striction and prolongation operators, unless the problem comes from a PDE
discretization on a structured grid. On the other hand, PETSc supplies in-
terfaces to the Trilinos/ML and Hypre packages, that implement algebraic
multilevel preconditioners (see below).

Classical algebraic multigrid preconditioners are implemented in Boomer-
AMG [28], which is included in Hypre [23], a library of solvers and precon-
ditioners for the solution of large and sparse linear systems on massively
parallel computers. Different parallel “classical” coarsening schemes are
available in BoomerAMG, together with various interpolation and relax-
ation techniques, including Schwarz smoothers. Hypre is written C (with
some exceptions, that are in C++), but provides interfaces for the C, C++,
Fortran, and Python languages; it uses MPI for inter-process communica-
tions.
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ML [27] is a package implementing various types of algebraic multilevel
preconditioners, with emphasis on preconditioners based on smoothed ag-
gregation. It also implements other multilevel approaches, such as edge-
element eddy current algebraic multigrid for Maxwell’s equations, finite-
element based two-level schemes, refinement-based multigrid and classical
algebraic multigrid. A variety of parallel smoothers is available, including
the parallel Schwarz preconditioners from AztecOO, an object-oriented ver-
sion of the Aztec library [38]. All the computational kernels are written in
C, with some C++ interfaces provided; MPI is used for message passing.
ML can be used as a stand-alone package; however, it is designed to inter-
operate with other packages of the Trilinos [29] framework, which provides
an object-oriented C++ software infrastructure, making available common
core data structures and abstract solver APIs for different packages, and
modern tools for developing and implementing new algorithms for scientific
and engineering applications.

Recursive ILU-based multilevel preconditioners are implemented in pA RMS
[33], which is a library of parallel solvers and preconditioners for distributed
sparse linear systems. It is written in C and Fortran 77 and uses MPI for
inter-process communications. Basic AS and Schur-complement precondi-
tioning techniques are available through the recursive ILU approach.

7 Conclusions and future work

We presented the design objectives, the software architecture and an exam-
ple of use of MLD2P4, a package of parallel algebraic multilevel precondition-
ers based on AS methods and on smoothed aggregation. The object-based
design coupled with the choice of Fortran 95 was a key issue in achieving
goals such as flexibility, extensibility, portability and ease of use, while pre-
serving efficiency.

We plan to extend MLD2P4 with further functionalities, including

e other aggregation algorithms, in particular smoothed aggregation vari-
ants for highly nonsymmetric matrices;

e other multilevel cycles, such as general V-cycles, W-cycles and full
multigrid ones;

e other base preconditioners.

We also plan to exploit new object-oriented feautures of Fortran 2003, as
soon as a wide coverage of such standard is ensured by the compiler vendors.
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The source code distribution of MLD2P4, along with its User’s and Ref-

erence Guide, is available from http://www.mld2p4.it.
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