
Multi-Site Jobs Management
System (MJMS):

 A tool to manage multi-site MPI
applications execution in Grid

environment

Jaime Frey1, Francesco Gregoretti2,
Giuliano Laccetti3, Almerico Murli3,

Gennaro Oliva2

Outline

• Multi-site Parallel Application
• Grid Application Management System
• MJMS System
• MJMS Architecture

– MJMS Server, Coordinator,
GangMatchMaker, Advertiser

• Multi-Site Job Life Cycle
• Preliminary experience
• Future Works

Outline

• Multi-site Parallel Application

Multi-Site Parallel Application

• Multiple distributed processes running
on one or more computing resources in
a Grid environment:
– Heterogeneous
– High-Performance
– Geographically distributed

MPI on the Grid

• The Message Passing Interface standard
is:
– easy to understand and use
– architecture-independent
– portable
– widely-used

• MPI eases Grid applications
development to programmers with
parallel computing skills

Grid-enabled MPI
implementations

• MagPIe
• MPICH-G2
• MPI Connect

• MetaMPICH
• Stampi
• PACX-MPI

Grid-enabled MPI
implementations

• MagPIe
• MPICH-G2
• MPI Connect

• MetaMPICH
• Stampi
• PACX-MPI

• group multiple Grid resources
potentially heterogeneous for the
execution of MPI programs

• use vendor-supplied MPI libraries over
high-performance networks for intra-
machine messaging

Missing Application
Management System

• Advanced libraries support coallocation
an synchronization

• No one provides advanced execution
management tools

• Users must explicitly:
– specify resources to be used for the

execution
– directly handle possible failures

Outline

• Multi-site Parallel Application
• Grid Application Management System

Grid Job Management
Systems

• The adoption of job management
systems (Condor-G, Datagrid WMS)
facilitates the use of the Grid for
sequential and parallel applications

• These systems can transparently handle
on the users behalf:
– resource selection
– resource allocation
– file transfers
– application monitoring
– failure events

Grid Job Management Systems

• Existing management systems don’t
handle requests for multiple resources
within a single job

• They don’t allow the execution of
multi-site parallel applications

Outline

• Multi-site Parallel Application
• Grid Application Management System
• MJMS System

MPI Job Management System

• MJMS manages the execution of multi-
site parallel MPI applications in a Grid
environment

• MJMS
– interacts with the Condor-G daemons for

job execution management
– uses the services provided by DUROC to

handle job synchronization across sites

Condor-G features

• Interacts with the GRAM service for job
submission and monitoring

• Provides a high-level language called
ClassAds to describe job requirements
and preferences and Grid resources
characteristics

• Has some fault-tolerance features
• Can manage distributed I/O operations
• Provides a robust mechanism called

Matchmaking to match a job request
with a computing resource

Condor-G extensions

• Condor-G system has been extended in
order to support
multi-site parallel applications
– Support for MPICH-G2 grid enabled MPI

implementation
– Substitute Matchmaking mechanism is

limited to match each single job request
with a single resource

– the condor_collector daemon doesn’t
interact with the Globus Information System

• MJMS allows the effective, reliable and
secure execution of multi-site parallel
applications in the Grid environment
– Based on Condor-G
– Uses Condor submit description file syntax
– …
– Selects available computing resources

according to application requirements
– Interacts with the local management

systems through Condor-G

MPI Job Management System

Users must

• User splits her application into subjobs
• Each subjob is assigned to a Grid

resource
• User can specify requirements and

preferences for each subjob
• Requirements and preferences reflect

needs in terms of computational and
communication costs

• Subjobs can have …interdependecies…

MJMS features

• MJMS assigns each subjob to a single
Grid resource

• MJMS locates a matching pool of
available resources according to the
application requirements and
preferences and subjobs
interdependencies

• Resources are picked in the Globus
Information System

(subjob1)
universe = globus
executable = bcg_dist
arguments = s3rmt3m3.mtx 3 bs3rmt3m3.mtx 7 15 16 17 18 24 25 31
requirements = (OpSys == ‘‘LINUX’’ && Arch == ‘‘i686’’) && (ClusterNodeCount >= 17)
environment = P4_SETS_ALL_ENVVARS=1; MGF_PRIVATE_SLAN=1;
rank = 10000/ClusterNetLatency + 10*ClusterCPUsSpecFloat
transfer_input_files = s3rmt3m3.mtx,s3rmt3m3_rhs.mtx
globusrsl = (jobtype=mpi) (count=17) (label=subjob 0)
LD_LIBRARY_PATH=/opt/globus-2.4.3/lib/
when_to_transfer_output = ON_EXIT
should_transfer_files = YES
output = outfile.$(Cluster)
error = errfile.$(Cluster)
log = logfile.$(Cluster)
machine_count = 17
queue
(subjob2)
universe = globus
executable = bcg_dist
machine_count = 4
log = logfile.$(Cluster)
error = errfile.$(Cluster)
output = outfile.$(Cluster)
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
LD_LIBRARY_PATH=/opt/globus-2.4.3/lib/
globusrsl = (jobtype=mpi) (count=4) (label=subjob 17)
transfer_input_files = s3rmt3m3.mtx,s3rmt3m3_rhs.mtx
arguments = s3rmt3m3.mtx 3 bs3rmt3m3.mtx 7 15 16 17 18 24 25 31
environment = P4_SETS_ALL_ENVVARS=1; MGF_PRIVATE_SLAN=1;
requirements = (OpSys == ‘‘LINUX’’ && Arch == ‘‘i686’’) && (ClusterNodeCount >= 4)
queue

(subjob3)
universe = globus

machine_count = 14
executable = bcg_dist

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = s3rmt3m3.mtx,s3rmt3m3_rhs.mtx
arguments = s3rmt3m3.mtx 3 bs3rmt3m3.mtx 7 15 16 17 18 24 25 31

requirements = (OpSys == ‘‘LINUX’’ && Arch == ‘‘i686’’) && ClusterNodeCount >= 14)
environment = P4_SETS_ALL_ENVVARS=1; MGF_PRIVATE_SLAN=1;

globusrsl = (jobtype=mpi) (count=14) (label=subjob 21)
LD_LIBRARY_PATH=/opt/globus-2.4.3/lib/

rank = 10*ClusterCPUsSpecFloat
+Subnet1 = subjob1.Subnet

output = outfile.$(Cluster)
error = errfile.$(Cluster)

log = logfile.$(Cluster)
queue

Outline

• Multi-site Parallel Application
• Grid Application Management System
• MJMS System
• MJMS Architecture

– MJMS Server, Coordinator,
GangMatchMaker, Advertiser

MJMS Architecture

MPI Job management system

Coordinator

GangMatch
Maker

Advertiser

Scheduler

Collector

MDS

Grid
Manager

Resource 0 Resource N

Gatekeeper

MPI
subjob0

Condor-G

Gris

Gatekeeper

MPI
subjobN

MJMS
Server

MJMS
Client

MPI
subjob0

MPI
subjobN

GrisGIIS

MJMS Server

• Accepts submission and cancellation
requests and queries about job status

• Executes and coordinates the other
components

• User communicates with the server by
using the client commands:
– mjms_submit
– mjms_status
– mjms_cancel

Coordinator

• Interacts with the condor_scheduler for
job scheduling

• Uses the DUROC services for subjobs
synchronization

• Queries the GangMatchMaker for a pool
of consistent resources

GangMatchMaker

• The GangMatchMaker uses the
Gangmatching model to locate a pool of
resources for multi-site job execution

• The GangMatchMaker is able to match
the subjobs execution requests and the
available resources by simultaneously
taking into account:
– Subjobs requirements
– Subjobs preferences
– Subjob interdependencies

Advertiser

• The Advertiser periodically sends
ClassAds representing available
resources status and characteristics to
the condor_collector

• The Advertiser gathers information by
querying a set of Globus MDS servers,
extracting data relevant to MJMS

Advertiser

• Parallel and multi-site parallel
application generally have different
requirements from those of sequential
applications
– high-performance network characteristics
– resource neighborhood

• The Globus Information System have
been extended with a custom schema
and a corresponding Information
Provider in order to publish resources
network characteristics

Advertiser

• Information are extracted by the
Advertiser and can be used by the
GangMatchMaker when performing
matches

• User is therefore able to specify
conditional expressions with respect to
the network
performances
characteristics

system-network-vendor: Quadrics
cluster-network-model: Elan
cluster-network-version: 4
cluster-network-mpi-0-latency: 2.63
cluster-network-mpi-1024-latency: 6.32
cluster-network-mpi-32768-latency: 44.40
cluster-network-mpi-64-bandwidth: 25.64
cluster-network-mpi-1024-bandwidth: 177.95
cluster-network-mpi-32768-bandwidth: 718.91

Outline

• Multi-site Parallel Application
• Grid Application Management System
• MJMS System
• MJMS Architecture

– MJMS Server, Coordinator,
GangMatchMaker, Advertiser

• Multi-Site Job Life Cycle

Job Lifecycle (1/4)

• User submits her job to the MJMS
Server

• Job Status becomes ACCEPTED
• The server submits execution request to

the Coordinator
• Coordinator queues subjobs in the

condor_scheduler in hold state
• Coordinator queries the

GangMatchMaker for a pool of resources

Job Lifecycle (2/4)

• The GandMatchMaker queries the
condor_collector for available resources

• If GMM finds resources that fits job
needs, it sends their globus contact
strings to the Coordinator and the JOB
status becomes MATCHED

• If such resources are not available the
JOB status becomes UNMATCHED

Job Lifecycle (3/4)

• Coordinator modify the target of the
subjbos in the Condor queue and
release them

• From this point Condor-G takes care of
job execution
– Contacts the Gram Manager
– Schedule subjobs execution on the local

management system

• Once a subjob have been placed in
execution all its processes stops at the
DUROC barrier

Job Lifecycle (4/4)

• Once all the
subjobs arrive
to the DUROC
barrier
computation
starts

• JOB state
becomes
RUNNING

ACCEPTED

MATCHED UNMATCHED

BARRIERED

RUNNING

DONE FAILED

Outline

• Multi-site Parallel Application
• Grid Application Management System
• MJMS System
• MJMS Architecture

– MJMS Server, Coordinator,
GangMatchMaker, Advertiser

• Multi-Site Job Life Cycle
• Preliminary experience

Preliminary experience

• MJMS was used to run an iterative
solver of sparse linear systems of
equations with multiple right-hand sides
in the Grid environment.

• In this context the Block version of the
Conjugate Gradient algorithm (BCG)
becomes attractive: it reduces the
number of synchronization points and
increases the size of messages
improving latency tolerance

BCG Algorithm

• The BCG algorithm consists of
eight concurrent tasks with
different computational complexity

• To correctly balance the
computational load we introduced
a two-level parallelism schema in
its implementation

BCG Dependencies DAG

Task 3
Step k

Task 4
Step k

Task 2
Step k

Task 1
Step k

Task 6
Step k

Task 7
Step k

Task 5
Step k

Task 4
Step k+1

Task 8
Step k

Task 1
Step k+1

BCG Algorithm

• First level reflects task
decomposition

• Second level has been introduced
within the most computationally
intensive tasks

• The resulting multi-site job
consists of different subjobs each
grouping one or more tasks

• Each subjob must be assigned to a
computing resource

BCG Algorithm

• BCG implementation uses a grid-enabled MPI
library based on MPICH-G2 called MGF

• MGF allows transparent and efficient usage of
Grid resources including clusters with private
networks

• MJMS assigns the subjobs to the available
parallel computing resources according to their
computational costs and inter-task
communication costs

• MJMS let us to perform a better resource
workload balancing that improved the overall
speedup performance.

BCG subjobs Decomposition
(subjob1)
universe = globus
executable = bcg_dist
arguments = s3rmt3m3.mtx 3 bs3rmt3m3.mtx 7 15 16 17 18 24 25 31
machine_count = 17
transfer_input_files = s3rmt3m3.mtx,s3rmt3m3_rhs.mtx
output = outfile.$(Cluster)
globusrsl = (jobtype=mpi) (count=17) (label=subjob 0)
requirements = (OpSys == ``LINUX'' && Arch == ``i686'') && (ClusterNodeCount >= 17)
rank = 10000/ClusterNetLatency + 10*ClusterCPUsSpecFloat
(subjob2)
universe = globus
executable = bcg_dist
arguments = s3rmt3m3.mtx 3 bs3rmt3m3.mtx 7 15 16 17 18 24 25 31
machine_count = 4
transfer_input_files = s3rmt3m3.mtx,s3rmt3m3_rhs.mtx
output = outfile.$(Cluster)
globusrsl = (jobtype=mpi) (count=4) (label=subjob 17)
requirements = (OpSys == ``LINUX'' && Arch == ``i686'') && (ClusterNodeCount >= 4)
(subjob3)
universe = globus
executable = bcg_dist
arguments = s3rmt3m3.mtx 3 bs3rmt3m3.mtx 7 15 16 17 18 24 25 31
machine_count = 14
transfer_input_files = s3rmt3m3.mtx,s3rmt3m3_rhs.mtx
output = outfile.$(Cluster)
globusrsl = (jobtype=mpi) (count=14) (label=subjob 21)
requirements = (OpSys == ``LINUX'' && Arch == ``i686'') && (ClusterNodeCount >= 14)
rank = 10*ClusterCPUsSpecFloat

task 1, 2

task 3, 4, 5

task 6, 7, 8

[Type = “Job”;

 Ports = {

 [Label=“subjob1”;

 Requirements=subjob1.type==“Machine” &&

subjob1.ClusterNodeCount >= 17;

 Rank=10000/subjob1.ClusterNetMPILatency

 +10*subjob1.ClusterCPUsSpecFloat;

],

 [Label=“subjob2”;

 Requirements=subjob2.type==“Machine'' &&

subjob2.ClusterNodeCount >= 4;

],

 [Label=“subjob3”;

 Subnet1 = subjob1.Subnet;

 Requirements=subjob3.type==“Machine” &&

subjob3.ClusterNodeCount >= 14;

 Rank=10*subjob3.ClusterCPUsSpecFloat;

] }

]
Gang match

[MyType = “Machine”;
 Name = “vega.na.icar.cnr.it”;
 Subnet = “140.164.14”
 ClusterNodeCount = 17;
 ClusterCPUsSpecFloat = “558”;
 ClusterNetiMPILatency = “38”;
 Ports = { [Label = “subjob”] }
]

[MyType = “Machine”;
 Name = “altair.dma.unina.it”;
 Subnet = “192.167.11”
 ClusterNodeCount = 11;
 ClusterCPUsSpecFloat = “6”;
 ClusterNetiMPILatency = “117”;
 Ports = { [Label = “subjob”] }
]

[MyType = “Machine”;
 Name = “beocomp.dma.unina.it”;
 Subnet = “192.167.11”
 ClusterNodeCount = 14;
 ClusterCPUsSpecFloat = “13”;
 ClusterNetiMPILatency = “65”;
 Ports = { [Label = “subjob”] }
]

...

...

...

...

Resources Pool

Outline

• Multi-site Parallel Application
• Grid Application Management System
• MJMS System
• MJMS Architecture

– MJMS Server, Coordinator,
GangMatchMaker, Advertiser

• Multi-Site Job Life Cycle
• Preliminary experience
• Future Works

Future: Multi-institution
Multi-user Environment

• MJMS was designed on top of the Condor-G
System a personal desktop agent but can be
used in multi-institution multi-user
environment

• The DataGrid WorkLoad Management System
based on the Condor-G system, is used in the
EGEE/LCG production Grid by thousands of
users and hundreds of institutions

• MJMS can be used in a multi-user and multi-
institutional environment by manging
resource selection on the basis of Virtual
Organization (VO) membership with a system
to verify user VO association like VOMS

Future: Local batch
management interaction

• Another issue for the use of MJMS in a
production Grid is the interaction with the local
batch management systems

• The GangMatchMaker should take care of the
batch systems queues when matching subjobs
with resources

• Queues characteristics and status can be
published by the Globus Information System
and considered when locating a computing
resource for job execution

• Resource selection becomes hard when there
are not enough free resources available and
some subjobs need to be queued on the local
batch systems before running

Future: MPI implementation and
Grid Techonologies

• MJMS implementation has been based
on MPICH-G2 and pre-WS GRAM

• MJMS design is independent of the MPI
implementation and Grid technology

• MJMS implementation can be extended
to support other grid-enabled MPI
libraries (e.g. PACX-MPI) and Grid
technologies supported by Condor-G:
– NorduGrid
– Unicore
– WS GRAM
– Remote Condor pools

Future:Aggregate Matching

• Job descriptions have to specify the
number of subjobs and the number of
CPUs in each subjob.

• GangMatchMaker should allow an
aggregate matching policy to increase
scheduling flexibility

• A job asks for a total number CPUs,
resources advertise some number of
currently available CPUs, and the
GangMatchMaker adds resources to the
gang until the number of CPUs
requested is reached

