Machine Learning Techniques for Bacteria Classification

Massimo La Rosa Riccardo Rizzo <u>Alfonso M. Urso</u> S. Gaglio

ICAR-CNR

University of Palermo

Workshop on Hardware Architectures Beyond 2020: Challenges and Opportunities for Computational Biology and Bioinformatics

Napoli – December 19, 2007

Motivation

Goals

A new approach to microbial identification

Genotypic feature based taxonomy Visualization

Methodologies -

Conclusions

Self organizing Topographic map

Deterministic annealing

Results

A methodology to create a visualization and classification tool

Motivation

Goals

A new approach to microbial identification

Genotypic feature based taxonomy Visualization

Methodologies

Conclusions

Self organizing Topographic map

Deterministic annealing

Results

A methodology to create a visualization and classification tool

Motivation

- Microbial identification is crucial for the study of infectious diseases.
- Bacterial taxonomy is usually based on phenotypic characters
- A new approach based on bacteria genotype is under development
- 16S rRNA "housekeeping" gene for taxonomic purposes

Outline

Goals

A new approach to microbial identification

Genotypic feature based taxonomy Visualization

Methodologies

Conclusions

Self organizing Topographic map

Deterministic annealing

Results

A methodology to create a visualization and classification tool

Goal

- Genotypic features based taxonomy
- Topographic representation of the bacteria clusters
 - Finding misclassification = discovery of new pathogens
 - Classifying organisms with an unusual phenotype

Outline

Goals

A new approach to microbial identification

Genotypic feature based taxonomy Visualization

Methodologies

Conclusions

Self organizing Topographic map

Deterministic annealing

A methodology to create a visualization and classification tool

Methodologies

General framework

Building Dataset

Sequence Alignment

Evolutionary Distance

Soft Topographic Map Algorithm

General framework

- 1 downloading and filtering gene sequences from NCBI databases
- 2 sequence alignment (Needleman-Wunsch)
- 3 computing dissimilarity matrix (evolutionary distance)
- 4 clustering (SOM on pairwise distances) and visualization (UMatrix style map)

Building Dataset

14 Orders

Phylum BXII (Proteobacteria) Class III (Gammaproteobacteria)

147 16S rRNA gene sequences downloaded from GenBank databas

		Order Name	Number of Families	Number of Type Strains	
		Chromatiales	3 Families	25 Type Strains	
	\triangle	Xanthomonodales	1 Family	11 Type Strains	
aproteobacteria	lacksquare	Thiotrichales	3 Families	11 Type Strains	
		Methylococcales	1 Families	7 Type Strains	
	0	Pseudomonadales	2 Families	7 Type Strains	
	★	Vibrionales	1 Family	3 Type Strains	
te	\bullet	Enterobacteriales	1 Family	39 Type Strains	
Gammapro	Ο	Acidithobacillales	2 Families	2 Type Strains	
		Cardiobacteriales	1 Family	3 Type Strains	
		Legionellales	2 Families	2 Type Strains	
	\bigcirc	Oceanospirillales	4 Families	11 Type Strains	
	Χ	Alteromonadales	1 Family	13 Type Strains	
	☆	Aeromonadales	2 Families	7 Type Strains	
	۸	Pasteurellales	1 Families	6 Type Strains	

147 Type Strains

Sequence Alignment

- Sequence alignment allows to compare homologous sites of the same gene between two different species
- Two well known alignment algorithms used:
 - ClustalW: multiple-alignment
 - Needleman-Wunsch: pairwise alignment

$$S_{a} = ATGGACGAGCAA \\ S_{b} = ATCACTTCAGC$$
 Original sequences

$$ATGGAC - GAGCAA \\ || \ \# | \ \# | || \\ H | \ \# | |$$
 Sequence Allignment

$$AT - CACTTCAGC - - \\ \uparrow \qquad \uparrow \qquad f \\ Replacement \qquad Gap$$

Evolutionary Distance

- The simplest type of distance is the number of nucleotide substitutions per site.
 - Warning: it underrates real distances
- Jukes and Cantor method was used: it provides a better estimate of evolutionary distances
- Evolutionary distances are elements of the symmetric dissimilarity matrix:

Type strain	1	2	3	4	5	6	7
1	0	0.06286	0.11215	0.06482	0.05128	0.09451	0.0678
2		0	0.10608	0.0579	0.065	0.07196	0.04682
3			0	0.1224	0.11418	0.10279	0.1153
4				0	0.06082	0.10224	0.0676
5					0	0.10595	0.0736
6						0	0.0823
7							

Soft Topographic Map Algorithm (1)

- Extension of Kohonen's SOM for pairwise data
- The position of bacteria clusters in the topographic maps is based on the optimization, through deterministic annealing technique, of a cost function that takes its minimum when each data point is mapped to the best matching neuron

Soft Topographic Map Algorithm (2)

1) Initialization Step: a) put $e_{tr} \leftarrow n_{tr}$, $\forall t, r, \in [0, 1]$ b) compute lookup table for h_{rs} c) choose initial value of β , β_{final} , increasing temperature factor η , threshold ϵ 2) Training Step: a) while $\beta < \beta_{final}$ (Annealing cycle) i. repeat (EM cycle) A) E step: compute $P(\mathbf{x}_{t} \in \mathbf{C}_{r}) \forall t, r$ B) M step: compute a_{tr}^{new} , $\forall t$, rC) M step: compute $e_{tr}^{new}, \forall t, r$ ii. until $||e_{tr}^{new} - e_{tr}^{old}|| < \epsilon$ iii. put $\beta \leftarrow \eta \beta$ b) end while

$$h_{rs} = \exp\left(-\frac{|\boldsymbol{r}-\boldsymbol{s}|^2}{2\sigma^2}\right), \forall \boldsymbol{r}, \boldsymbol{s}$$

Assignment probability:

$$P(x_t \in C_r) = \frac{\exp(-\beta e_{tr})}{\sum_{u} \exp(-\beta e_{tu})}, \forall t, r$$

Partial assignment cost:

$$e_{tr} = \sum_{s} h_{rs} \sum_{t'} a_{t's} \left(d_{tt'} - \frac{1}{2} \sum_{t''} a_{t's} d_{t't''} \right), \forall t, r$$

$$a_{tr} = \frac{\sum_{s}^{s} h_{rs} P(\boldsymbol{x}_{t} \in \boldsymbol{C}_{s})}{\sum_{t'} \sum_{s} h_{rs} P(\boldsymbol{x}_{t'} \in \boldsymbol{C}_{s})}, \forall t, r$$

Soft Topographic map

Input vector

The topographic map is a lattice (two dimensional in our case) that self organize in the pattern space

Soft Topographic Map Algorithm (3)

- The algorithm that "moves" this lattice is called deterministic annealing
 - The advantage of deterministic annealing is to find a global minimum of the approximation error

$$n_{rs} = \exp\left(-\frac{|\boldsymbol{r}-\boldsymbol{s}|^2}{2\sigma^2}\right), \forall \boldsymbol{r}, \boldsymbol{s}$$

Assignment probability:

$$P(\mathbf{x}_{t} \in \mathbf{C}_{r}) = \frac{\exp(-\beta e_{tr})}{\sum_{u} \exp(-\beta e_{tu})}, \forall t, r$$

Partial assignment cost:

$$e_{tr} = \sum_{s} h_{rs} \sum_{t'} a_{t's} \left(d_{tt'} - \frac{1}{2} \sum_{t''} a_{t''s} d_{t't''} \right), \forall t, r$$

Weighting factor:

$$a_{tr} = \frac{\sum_{s} h_{rs} P(\mathbf{x}_{t} \in \mathbf{C}_{s})}{\sum_{t'} \sum_{s} h_{rs} P(\mathbf{x}_{t'} \in \mathbf{C}_{s})}, \forall t, \mathbf{r}$$

Outline

Experimental Results

- From 8x8 up to 45x45 map dimensions
- We trained 20 maps of each geometry in order to avoid the dependence from the initial conditions
- The results obtained using the two alignments methods do not present any significant difference

Experimental tests

• Hardware resources

 16 nodes cluster, dual processor Xeon 3.4 GHz, 4 GB RAM, 6 TB storage, Myrinet-Fiber communication

• Software

Languages: Java, Python

• Libraries: BioJava, Jama

Map size	Average processing time (min.)
8x8	0,6
9x9	1
10x10	2
11x11	2
12x12	4
13x13	4
14x14	6
15x15	9
16x16	12
17x17	16
18x18	17
19x19	23
20x20	30
25x25	90
30x30	240
35x35	360
40x40	660
45x45	1380

Map Evaluation

Usually topology measures are considered, but in our case there is not a space that contains the patterns (sequences)

We only have distances between patterns, and no metrics!

Probable topology distortion

Map evaluation

We take rows and columns of the maps and compare the order of the elements in map with the order obtained from the dissimilarity matrix

Map evaluation

This sequence...

... is compared with...

This comparison is made using the Spearman coefficient in order to obtain a similarity value among the two sequences

Of course the two sequences should be the same in a good map

Map Evaluation

Map evaluation

• We have an index for each map and we can see that some geometry are better than other

Conclusions

- Soft Topographic Map for clustering and classification of bacteria
- Genotype based taxonomy
- Detecting singular situations
- Further analysis with other housekeeping genes or using other distance algorithms, e.g. Normalized Compressed Distance