Welcome to the « SPEAr Age » Structured Processor Enhanced Architecture

SPEAr: an HW/SW reconfigurable

multi processor architecture

COMPUTER PERIPHERAL GROUP

Outline

- □ Economics of Moore's law and market view
- □ SpearTM architecture
- □ From single core to dual core
- Development flow
- Application examples
- Conclusions

ompany Confidentia

Moore's laws

□ Moore's laws:

- every 18 months chip complexity doubles
- cost of fabs will double from one generation to the next

The reality

- more functions integrated
- □ NREs more than double from one generation to the next
 - Cost of masks double from one generation to the next
 - Development costs increase exponentially
- Revenues for each ASIC is not growing like investments
- 61% of designs requires at least one respin

Company Confidentia

The Complexity is increasing

Once upon a time there was the Single Function printer, only capable to print a document from a PC

It then became a 3-1 Multifuction, capable of printing, scanning and faxing documents

- It further evolved into a 4-1 Multifuction, capable of printing high quality pictures, working as a stand alone photocopier and with networking capabilities
- It finally became an "Easy-to-use" stand alone printing tool for your pictures

.. and small businesses are proliferating

The economics are changing ...

... but proprietary technologies continue to be a differentiation factor

Is the Full Asic a sustainable model ?

What the market is looking for

□ A good, standard and powerful architecture based on standard IPs

- easy to reuse
- easy to migrate to different technology and different silicon vendors
- □ Easy access to leading edge technologies
 - lower power consumption
 - higher speeds
 - more functions
- Fast turn around time
 - market is volatile, pervasion of new technologies is very rapid
- □ Simple and early system development
 - the ASIC or the IC is just a small part of the system
 - SW is playing a key role

SPEAr concept

SPEArTM: The architecture

Setting the stage SPEArHead200: single processor

- □ Introducing SPEArHead200 the first Configurable SOC
- Based on a robust state of the art architecture, IP selection and core (ARM9 266Mhz supporting MMU)
- Including 200 Kgates of configurable logic
- □ Introducing a new development methodology
- Dramatically reducing cycle times
 - 6 weeks vs. 6 months for silicon re-spins
- Dramatically reducing NRE
 - Typically 1/5 of a full asic NRE
- First Silicon since Q4/2005

vfigurable SOA

SPFArHead200

200kgate ARM926@266MHz BGA420

Innovative System Development

It comes equipped with a suite of drivers for all the peripherals Supporting Linux and WxWorks Operating Systems Supporting simple JTAg based emulators

Supporting Multiple Interfaces

FW/SW Partitioning

□ ARM core, equipped with Linux (core 2.6.10 Montavista) or VxWorks

(extension to Windows CE in evaluation)

- OS
- Connectivity
- Application layers
- Real time operations

Customizable logic for hardware accelerators & specific IPs

Moving to dual processor: SPEArPlus600

SPEArPlus600

SPEAr PLUS – 90nm technology

□ Main highlights:

- 600 Kgates progr logic array
- 2 ARM926EJS @333MHz
- Dithered PII
- I USB2.0 device
- 2 USB2.0 host
- DDR1+DDR2 COMBO PHY
- CMOS SRC 3.3V, LVDS 2.5V
- 2 Oscillators
- ADC 8 channels, 10bits
- Package: PBGA 420 23x23

Technical Characteristics

- Dual 333Mhz ARM926 16k+16k Architecture
 - Potential TCM extension (up to 32k+32k)
 - 720 (2 x 360) Mips Drystone 2.1
- □ 600kgate of configurable logic
- □ From 1 to 4 Metals needed to be specialized
- **Ethernet GMAC + USB2.0 Triphy, Timers, RTC, 2 UARTs, 3SPI, IRDA,I²C**
 - USB: 1 Device port + 2 Host ports
- □ Jpeg accelerator, Display controller XGA 1024x768, color TFT panel
- 4 High Performance Memory controller
 - SDRAM, DDR1/2, Serial Flash, Nand Flash
 - 32bit bus @ 166MHz, total 664 MBytes/Sec
- □ 136 KB SRAM & 32KB ROM
- High Performance System Architecture
 - High speed I/Os overall throughput: ~ 305MByte/sec
 - Four channel DMA 32bit @ 166Mhz: ~ 664MByte/sec
- Package PBGA 420 balls, 23x23mm, 1 mm pitch

128KB+8KB Internal SRAM memory

Maximum flexibility in grouping memory blocks • e.g. 10KB= 1 block 8KB+1block 2KB...

Multi – Core FW/SW Partitioning

- ARM 1, equipped with Linux (core 2.6.10 Montavista), is used to run:
 - Job Manager & Connectivity
- ARM2, equipped with RTOS, is used to run:
 - Image pipeline & Real time operations

Customizable logic for hardware accelerators

Company Confidential

Application examples: MPEG4 decoding

Full SW solution

- □ Maximum performances on one ARM926
 - 18fps if ARM running at 266MHz
 - 22fps if ARM running at 333Mhz

□ CPU load for a MPEG4 stream simple profile, lev.0-3

PERFORMANCE REQUIREMENTS				
	QCIF	QVGA	CIF	VGA
Frame Rate	15fps	15fps	30fps	30fps
Bit Rate	64kbps	256kbps	384kbps	1Mbps
External Memory (excl. post processing)	80kB	238kB	313kB	930kB
CPU Load	16MHz	50MHz	130MHz	400MHz
Memory Footprint (inc. program code, ROM data and RAM data)	51kB			

MPEG4 decoder

HW/SW solution

- □ HW accelerator implemented in programmable logic
 - to accelerate the more complex functions of the SW decoder
 - size of the accelerator is 150kgates + 15kB SRAM running at 66MHz
 - Ioad of CPU is <10MHz</p>
 - VGA resolution 30 fps at 333MHz

Application examples: FAX function

FAX Soft Modem Linux Driver – Class

FAX Software – Modem Class 1

(ARM running at 266Mhz)

Conclusions

□ SpearPlus architecture opens the door to unprecedented flexibility

- HW configurability
- dual core SW configurability
- □ Symmetrical dual core architecture for maximum flexibility
 - Possibility to map different OS
 - Possibility to access all the peripherals from the 2 cores
 - Possibility to access programmable logic from the 2 cores
- HW flexibility
 - configurable logic on board
 - possibility to use embedded SRAm as TCM of ARM cores

Moving to dual processor

- Addressing market segmentation
- Higher Computation Power with lower power consumption
- Second Arm to boost performance
 - Easier to use than a dedicated DSP
 - Backward compatible
- Full reference platform for Printers
- Expanding into side applications