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Images from scanner

• For a typical microarray experiment the scanner 

produces two TIFF (Tagged Image File Format) 

16-bit (65’536 levels of grey) images, one for 

each fluorescent dye

• Commonly used dyes: Cy5 (red) and Cy3 (green)



• For visualization purposes (qualitative 
representation of results) a 24-bit RGB
image displaying fluorescence intensities 
for both wavelengths is obtained by 
pseudo-colour overlay:

Visualization of microarray images
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• Sometimes, to enhance visual inspection, 

pseudo-colour overlay is modified 

• e.g. Scanalyze:

Visualization of microarray images (cont.)
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Ideal microarray image

Ideal microarray image 

in terms of its image content:

• deterministic grid geometry
• known background intensity with zero uncertainty
• pre-defined spot shape
• constant spot intensity that 

– is different from the background, 
– is directly proportional to the biological phenomenon, and
– has zero uncertainty for all spots.

• for multi-channel microarray images same characteristics apply to 
each image channel, and channels are perfectly aligned

Alternatively, high statistical confidence in microarray measurements 
could be obtained acquiring images with really high resolution (very 

large number of pixels per spot). Problems: cost of microarray
experiments, limited scanner resolution, cost of storage



Sources of microarray image variations

cDNA technology is a complex 

electrical-optical-chemical process
(spanning cDNA slide fabrication, mRNA preparation, fluorescence dye 

labeling, gene hybridization, robotic spotting, green and red 
fluorophores excitation by lasers, imaging using optics, slide 

scanning, analog to digital conversion, image storage and archiving)

Microarray image variations: 

technology, grid geometry, background, spot morphology, 
foreground and background intensity



Variations due to technology

• number of channels: single-, double-, and 

multi-fluorescent microarray images

• substrates: glass, nylon membrane

• labeling schemes: radioactive, fluorescent

• storage file format: TIFF, SCN (Stanford Univ.)

• data compression: provided by file format

• data accuracy: number of bites per pixel

• …



Variations of grid geometry

• multiple grids

• rotation (printing dipping pins or substrate)

• missing rows (low discrimination power for small surface 
areas in glass slides)



Variations of background

• microarray slide preparation
(hybridization and spotting errors)

• inappropriate acquisition

procedures (dust or dirt)

• image acquisition

instruments (non-linearity of 

imaging components)

• …



Variations of spot location

• random deviation from ideal printing position 
(needles may vibrate slightly)

• warping (mechanical strain for nylon membrane)

• strong background signal (for fluorescent labeled 

probes)

• strong signal interference of neighboring spots 
(for radioactively labeled spots)

• …

Spot overlap



Variation of spot morphology

• Spot morphology other than 
circular (e.g. rectangles)

• Spatial and morphological 
variations of spots:
a. regular spot

b. inverse spot 

c. spatially deviating spot inside of 
a grid cell

d. spot radius deviation

e. tapering spot or comet shape

f. spot with a hole 

g. partially missing spot

h. scratched spot

a. b. c. d.

e. f. g. h.



Variations of spot vs. background intensity

• Fluorescent labeling: dark 
background, bright spots

Only background/foreground difference is relevant to 
biological meaning

BUT 

background and foreground variations affect the 
discrimination of the two classes

• Radioactive labeling: 
bright background, dark spots



Microarray image analysis

• Goal: design automated microarray image 
processing algorithms that are robust to all 
variations:
– technology

– grid geometry

– background

– spot location

– spot morphology

– dark-bright scheme



Steps in microarray image analysis

• gridding (addressing, spot finding, or grid alignment)

– Assign coordinates to all the spots

• segmentation (foreground separation)

– Classification of pixels either as foreground or as 
background

• intensity extraction (for each spot)

– Foreground fluorescence intensity pairs (R, G)

– Background intensities

– Quality measures

gridding segmentation
intensity

extraction



Gridding
• Objective: localize a 2D array of 

spots in a microarray scan before 
any information is extracted from 
the spots

• Localization is usually performed 
determining an orthogonal grid 
registered with the microarray
image content, so that:

– pairs of perpendicular lines 
intersect at the center location of 
each spot, or (equivalently)

– each spot is centered in a net 
mesh

gridding segmentation
intensity

extraction



1st classification of gridding methods

• Automation of methods:
– Manual: a grid template of spots is manually adjusted

• time consuming, tedious, results not reproducible

– Semi-automated: manual grid initialization followed by 
automated refinement

• less time consuming, increase of results reproducibility

– Fully automated: data driven without any human 
intervention, based on one-time human setup (for 
incorporating prior knowledge on image microarray
layout)

• reduced time consuming, high results reproducibility, but 
highly dependent on data content

gridding segmentation
intensity

extraction



2nd classification of gridding methods

• Image analysis approach:

– Template-based: define a template by specifying 

information about the microarray image and then 

adjust template location and parameters to match the 
spots (grid refinement) 

– Data-driven: 

• based on statistical analysis of 1D image 

projections, or

• used as part of image segmentation algorithms

gridding segmentation
intensity

extraction



Template-based approaches
• Adopted in most literature and existing software packages

(e.g., GenePix Pro by Axon Instruments, ScanAlyze or GridOnArray
by Scanalytics)

• Also adopted for initial grid, to be later refined (e.g.,[Yang et 
al., ‘00], [Antoniol et al., ‘05])

• Pros: 

• incorporates knowledge about ideal grid

• appropriate if measured grid geometry does 
not deviate too much from grid model defined 
by the template

• Cons: if measured spots are unpredictably 

regular, leads to inaccurate results or 
unacceptable costs for custom-tuned templates

uniformly spaced 

templates

gridding segmentation
intensity

extraction



Data-driven approaches

• based on statistical analysis of 1D image projections:
1. projection along rows and columns

2. detection of local maxima in projections

3. individuation of lines determined by local maxima, incorporating
input parameters (e.g. number of lines), and computation of 
local maxima spacing

4. intersection of orthogonal lines gives estimates of spot centers

• used as part of image segmentation algorithms:
– Mathematical morphology [Angulo et al., ‘03; Hirata et al., ‘01], 

Markov Random Field (MRF) models [Katzer et al., ‘03; Antoniol

et al, ‘04], graph models [Jin et al., ‘05]

• Pros: automatic alignment, also for non-uniform grids

• Cons: prone to misalignment due to spurious or missing spots, 
dependent on many parameters

gridding segmentation
intensity

extraction



Further problems related to gridding

1. Processing of multi-channel images 

2. Taking into account grid rotations

3. Accuracy vs. speed

4. Processing multiple grids

gridding segmentation
intensity

extraction



Channel fusion

How to process multi-channel images?

1. Gridding separate channels and then fusing grids

– Pros: intensity variations are not propagated

– Cons: computationally demanding, problems in 
merging multiple grids

2. Fusing channels and then gridding fused image

– Pros: computationally less demanding, no need for 

merging multiple grids

– Cons: intensity variations are propagated

gridding segmentation
intensity

extraction



Channel fusion (cont.)

2. Fusing channels and then gridding fused image.

Channels fusion by:

a) Linear combination weighted by median values (e.g 

Spot [Yang et al., ‘02])

b) Boolean OR function (e.g. Gridline [Bajcsy, ‘04])

OR =

R G

gridding segmentation
intensity

extraction



Grid rotation
input images can be rotated

α

compute α and:

• rotate input image by -α

• OR take into account α in 
subsequent steps

gridding segmentation
intensity

extraction

(coordinate system of robot printing
the array may be slightly rotated 

with respect to the microarray

image coordinate system)



Grid rotation (cont.)

Exhaustive search of all expected rotation angles 
(usually in [-π/4, π/4] or in a user defined interval [αmin, α max])

to find angle α that:
– minimizes a grid score function [Bajcsy, ‘04]

– maximizes median values of input image Radon Transform 

(RT) projection along direction α [Brandle et al., ‘03]

– maximizes values of OMT filtered input image RT 

projection along direction α [Antoniol et al., ‘05]

– maximizes combination of values of RT projection along 

the rows and columns of α-rotated binarized input image 
[Battiato et al., ‘07]

gridding segmentation
intensity

extraction



Grid rotation (cont.)

I1

RT(I1,0) 

RT(I1,-90) 
I2 

RT(I2,α)= RT(I1,0), RT(I2,α-90)= RT(I1,-90) 

RT(I2,-90) 

I2 = rotate(I1,-α)

gridding segmentation
intensity

extraction

RT(I2,0) 

Radon Transform RT(I, α): projection of image 

intensity I along direction α



Reducing the image size

Accessing and processing whole image (millions of pixels) 
is time consuming 

• Reduce input images to a smaller size, to reduce the 

quantity of information to be processed [Bajcsy, 2004]

– sub-sampling: select a single pixel from a group and use it to 
represent the entire group

– down-sampling: use a statistical sample (e.g. the mean) to 
create a new representation of an entire group of pixels

• Accuracy vs. speed

gridding segmentation
intensity

extraction



Processing Multiple Grids

• Line discontinuity
approach [Bajcsy, ‘04]

• Filtering approach
[Angulo et al., ‘04]

gridding segmentation
intensity

extraction



Segmentation

• Classification of pixels as foreground or 
background 
-> fluorescence intensities are calculated for each spot 

as measure of transcript abundance

• Production of a spot mask: set of 
foreground pixels for each spot

gridding segmentation
intensity

extraction



Classification of segmentation methods

According to geometry of produced spots:

– fixed circle [e.g. ScanAlyze, GenePix, QuantArray]

– adaptive circle [e.g. GenePix, Dapple]

– adaptive shape [e.g. Spot]

– histogram-based [e.g. ImaGene, QuantArray, DeArray]

gridding segmentation
intensity

extraction



Fixed circle segmentation

• Fits a circle with a constant diameter to all 
spots in the image [e.g. ScanAlyze]

gridding segmentation
intensity

extraction

• Pros: easy to implement

• Cons: the spots need to 
be of the same shape 
and size



Adaptive circle segmentation

• Fits a circle to all spots in the image, 

estimating the circle diameter separately for 

each spot [e.g. GenePix – older versions]

• Problematic if spot exhibits 

oval shapes

gridding segmentation
intensity

extraction

[GenePix Pro 6.0]



Adaptive shape segmentation

• Seeded Region Growing
[Adams et al, 94]

1. specification of seeds (number 
and position known)

2. bkg and fg regions grow from 
the seeds outwards 
simultaneously preferentially 
according to the difference 
between a pixel’s value and 
the running mean of values in 
an adjoining region

gridding segmentation
intensity

extraction



Histogram segmentation
• Uses a target mask chosen to 

be larger than any other spot

• fg and bkg intensities  
determined from the 
histogram of pixel values for 
pixels within the masked area

• Pros: resulting spot masks are 
not necessarily connected

• Cons: Unstable when a large 
target mask is set to 
compensate for variation in 
spot size

bkg foreground

gridding segmentation
intensity

extraction



Intensity extraction: spot intensity

Total amount of hybridization for a spot  
proportional to the total fluorescence at the 

spot

Spot intensity = mean (or median) of pixel 
intensities within the segmented spot 

mask

gridding segmentation
intensity

extraction



Intensity extraction: bkg intensity
spot measured intensity includes a contribution of non-specific 

hybridization and other chemicals on the substrate

background intensity = median of pixel intensities 

within selected regions surrounding the spot mask

gridding segmentation
intensity

extraction

[Y
a
n
g

e
t

a
l.
, 

’0
0
]

Blue square: Scanalyze

Green circles: QuantArray

Pink diamonds (valleys): Spot 



Our approach to gridding

Input data:

• PR = # of spots per row

• PC = # of spots per column

• R = spot radius

Output data:

• (x0,y0) = row and column coordinates 
of first spot center

• Sh, Sv = row and column grid spacing

Uniform grid uniquely determined:

Sh

Sv

R PR = 6

PC = 6

Objective: construct an uniform orthogonal grid 

registered with the microarray image content

(x0,y0)

( ) ( ) ji,Sjy,Sixy,x v0h0ji ∀⋅+⋅+=



Our approach to gridding (cont.)
[L. Maddalena, A. Petrosino, ‘07]

• Computation of (x0,y0): search for array A of 

centers of circles with approximate radius R and 

computation of minimum x and y coordinates:

– Circular Hough Transform (CHT)

– Orientation Matching Transform (OMT)

• Computation of Sh, Sv: 

– Average distances of centers in A

– Most frequent distances of centers in A

– Discrete Fourier Transform (DFT)



Computation of (x0,y0) based on CHT

Computation of (x0,y0):

1. preprocessing of input 
image (edge detection and 
image binarization)

2. computation of the Hough
space

3. search of maxima in the 
Hough space

4. (x0,y0) given by minimum x 
and y coordinates of maxima

22

c

2

c R)y(y)x(x =−+−Circular Hough Transform
[Duda et al.,‘72]



Computation of (x0,y0) based on CHT (cont.)

image

pre-processed image

Hough space

(x0,y0)

N.B. first spot barely evident in original image



Computation of (x0,y0) based on OMT
OMT (Orientation Matching Transform) [Ceccarelli, Petrosino, ’99] 
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OM(u,v) represents the evidence that pixel (u,v) is the 
center of a circular object

• extension of CHT 

• correlation-based transform

• invariant to contrast changes

• allows to deal with in the same manner with different radii

• can be tailored to recognize clear spots on dark bkg and viceversa

Ar
R(u,v) = annulus of radii r and R centered in (u,v)

Φ*(x,y) = orientation of gradient of ideal circle centered in (0,0) of radius (x2+y2)1/2

Φ(x,y) = orientation of image gradient at (x,y)



Computation of (x0,y0):

1. computation of the OMT

2. search of maxima in the OMT

3. (x0,y0) given by minimum x and y coordinates of 
maxima

Computation of (x0,y0) based on OMT (cont.)

(x0,y0)

image OMT



Computation of Sh and Sv

1. Given the array A of maxima (either from 
CHT or OMT), Sh and Sv computed as:

a) average (horizontal and vertical) distances of 
centers in A

b) most frequent (horizontal and vertical) distances 
of centers in A

2. Discrete Fourier Transform



Computation of Sh and Sv based on DFT

Compute Sv and Sh using  1D DFTs (Discrete Fourier 

Transforms) of image projections along rows and columns

1D DFT

1D

DFT
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Regular spacing of f(x) 
results in a local maximum 
of F(u) at frequency freqmax



Computation of Sh and Sv based on DFT (cont.)

1D DFT

image pixel
Sh

projection

image

projection

1D DFT



Some experiments

Microarray A

(PR=11, PC=12, R=6)



Some experiments (cont.)

Microarray B

(PR=22, PC=22, R=9)



Some experiments (cont.)

Microarray C

(PR=20, PC=20, R=7)



Errors in computation of (x0,y0)

( ) ( )2

00

2

00 yyxxC −+−=δ( )00 yx ,

= coordinates computed with ScanAlyze( )00 yx ,

= coordinates computed with our methods



Errors in computation of Sh and Sv

( ) ( )22

vvhhS SSSS −+−=δ( )vh SS ,

= average periods computed with ScanAlyze( )vh SS ,

= periods computed with our methods
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Further experiments
Example from

Spot [1]

4x4 grids

each with

PR=21, PC=21, R=4

[1] http://experimental.act.cmis.csiro.au/spot/demodownload/demodownload/SpotExamples.zip



Hybrid methods

1. Compute Sv
and Sh

2. Use Sv and 
Sh to identify 
the ROI 
where to look 
for circles

3. Compute
(x0,y0)
searching 
only into the 
ROI

Combination of methods for period and first center computation



Errors in computation of (xi,yi) ∀i
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= coordinates computed with ScanAlyze( )ii y,x

= coordinates computed with our methods



Conclusions

• Brief overview of image processing issues for 
microarray images:
– The data

– Sources of variations in the data

– Some methods usually adopted for the three steps 

1. Gridding

2. Segmentation

3. Intensity extraction



Conclusions (cont.)
• An approach to microarray image gridding:

computation of (x0,y0), Sh, and Sv and different methods 
to accomplish it
Pros: 

– incorporates knowledge about ideal grid (PR, PC, R), without 
requiring parameters that are data dependent ((x0,y0), Sh, Sv)

– does not produce misalignment due to spurious or missing 
spots

– Appropriate if:

• measured grid geometry does not deviate too much from 
grid model defined by the template, OR 

• adopted for initial grid, to be later refined

Cons: 

– if measured spots are unpredictably regular, leads to inaccurate
results


