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Introduction

� Supervised learning refers to the capability of a system to 
learn from experiments (training set), for which the 
outcome is known (health/disease, different diseases, …).

� The trained system is able to provide an answer (output) 
for each new question (input). 

� Supervised means the desired output for the training set is 
provided by an external teacher.

� In case of two outcomes (binary classification), supervised 
learning provides very successful models.
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Microarray applications

� Breast cancer: BRCA1 vs. BRCA2 and sporadic mutations,
– I. Hedenfalk et al, NEJM, 2001. (22 patients, 3226 genes)

� Prostate cancer: prediction of patient outcome after prostatectomy,
– Singh D. et al, Cancer Cell, 2002. (136 patients, 12600 genes)

� Malignant gliomas survival: gene expression vs. histological 
classification,
– C. Nutt et al, Cancer Res., 2003. (50 patients, 12625 genes)

� Clinical outcome of breast cancer,
– L. van’t Veer et al, Nature, 2002. (98 patients, 24188 genes)

� Recurrence of hepatocellaur carcinoma after curative resection, 
– N. Iizuka et al, Lancet, 2003. (60 patients, 7129 genes)

� Tumor vs. normal colon tissues,
– A. Alon et al, PNAS, 1999. (62 patients, 2000 genes)

� Acute Myeloid vs. Lymphoblastic Leukemia,
– T. Golub et al, Science, 1999. (72 patients, 7129 genes)
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Problem definition

� A way to represent the dataset produced through several (m) 
microarray experiments is to build a table, in which each column 
contains the n gene expression levels obtained in a single 
experiment. 

� Typically, m ~ 10, whereas n ~ 1000.

� A final column contains a classification label for the experiment.

heath982…123654experiment #m
………………

disease778…334334experiment #2
health657…5461234experiment #1
labelgene #n…gene #2gene #1



December 18, 2007  -- Pg. 6Methods and tools for the analysis of microarray data

Problem definition

� If we look at the table by rows, we obtain m points in a 
space with n dimensions (tissue space). 

� Each row represents the state of cells inside a given tissue.

� When an output class is attached to every tissue the target 
of the problem can be stated as:

Find a classifier that provides the correct output 
for tissues not included in the original dataset
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Problem characteristics

� Data produced in microarray experiments 
are exponentially increasing. 

� Data are stored and annotated in publicly 
available databases, which makes it 
possible to build large datasets.

� Experiments contain expression values 
for tens of thousands of genes. 

� Data can be updated, which poses 
problems to the training step.
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A toy problem

� Consider two sets of patients, for which glycemia and 
cholesterol have been analyzed.

� Suppose there exist an illness that affects 
patients in set A, but not in set B
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A BBA

A toy problem

� We want to separate patients in A from B: for each new 
one, we want to predict his health state.
– There exists a plane that classifies all points in the two sets
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A BBA

A toy problem

� We want to separate patients in A from B, for each new 
one, we want to predict his health state.
– There exists a line that classifies all patients in the two sets

� There are infinitely many lines that correctly classify the 
training data.
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Support vector machines

� Maximize the distance between support planes
– Support planes leave all points of a class on one side

� Support planes are pushed apart until they “bump” into a 
small set of data points (support vectors).

A BBA
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Support Vector Machine features

� Support Vector Machines are the state of the art for the 
existing classification methods for gene expression data 
analysis (Brown, PNAS, 1999).

� Their robustness is due to the strong fundamentals of 
statistical learning theory (Vapnik, 1995).

� Many implementations available: Matlab, R, Weka, 
M@chbet,...
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A different approach: GEC

� The problem can be restated as: find two hyperplanes, 
each the closest to one set and the furthest from the 
other.

� The binary classification problem can be solved as a 
generalized eigenvalue computation (GEC). 

A BBA

Mangasarian et al , TPAMI, 2006.
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Life is not linear

� Real life data are usually nonlinearly separable…

� Data is nonlinearly transformed in another space to increase 
separability, and linear discrimination is found in that space. 

T. Golub et. al Science, 1999.
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The kernel trick

� A standard technique is to transform points into a nonlinear 
space, via kernel functions, like the Gaussian kernel: 

� Each element of the kernel matrix is:

where

Bennett et al. OMS, 1992.
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Generalizability of the methods

� The classification surfaces can be very tangled.  

� Those models are good on original data, but do not
generalize well to new data (over-fitting).
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How to solve the problem? 
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Incremental classification

� A possible solution is to find a small and robust subset of 
the training set that provides comparable accuracy results.

� A smaller set of points reduces the probability of over-fitting
the problem.

� A kernel built from a smaller subset is computationally 
more efficient in predicting new points, compared to 
kernels that use the entire training set.

� As new points become available, the cost of retraining the 
algorithm decreases if the influence of the new points is 
only evaluated by the small subset.

Guarracino et al, JC, 2007.
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Other supervised methods

� Linear and quadratic discriminants (Dudoit et al., 2002)

� K-Nearest Neighbors (Pomeroy et al., 2002)

� Neural networks (Khan et al., 2001)

� Decision trees (Dudoit et al., 2000)

� Ensamble methods (Dudoit et al., 2002; Diettling and 
Buhlmann, 2003)
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Error estimation

� Holdout: the labeled dataset is divided in two parts: the 
training set (~2/3), and the test set (~1/3).

� Random sampling: the holdhout is reapeted on random 
training sets.

� k-fold cross validation: data is partitioned in k distinct 
subsets; each time a different fold is chosen for test. 

� Leave one out: 1-fold cross validation.
� P-value: significance level below which null hypothesis is 

rejected.
� ROC curves: tradeoff between positive hits and false 

allarms.



December 18, 2007  -- Pg. 21Methods and tools for the analysis of microarray data

Holdout

� Holdout: the labeled dataset is divided in two parts: the 
training set (~2/3), and the test set (~1/3).

� The training set is used to train the classifier, the test set to 
evaluate the error rate.

� Cons: Since it is a single train and test experiment, the 
holdout error estimate can be misleading, in case of 
“unfortunate” split.

Training set Test set

Total number of examples
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Random sampling

� Random sampling: the holdhout is repeated on random 
training sets, and error Ei is estimated on test examples.

� The error is obtained as the average of estimates Ei:

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Test example
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k-fold cross validation

� k-fold cross validation: data is partitioned in k distinct 
subsets; each time a different fold is chosen for test. 

� Pros: all examples in the dataset are used for both training 
and test.

� As befor the classification error is:

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Test examples
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Leave one out

� Leave one out: 1-fold cross validation.

� As usual the error estimate is:

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Test example

...
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P-value

� P-value: significance level below which null hypothesis is 
rejected.

� Null hypotesis: random classifier does not perform better 
than a fixed classification method.

� Perform k=100 random sampling. 
– For each k: 100 random shuffles of the labels in training set 

and train.
– Sum up the cases in which the random classifier outperforms 

the classifier on the error estimation.

� If the random classifier does better 500 times out of 10000 
repetitions (p < 0.05), the classification method is not that 
good!
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ROC curves

� ROC curves: tradeoff between positive hits and false 
alarms.
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Ongoing research

� How to derive grouping of genes 
responsible of classification?

� How to express conceptual a 
priori knowledge in more 
complex formulation than a {-1,1} 
label?

� How to integrate different data 
sources to obtain a system view?
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Conclusions

� When a priori information is available, use it!

� Use your knowledge, don’t relay only on number crunking.

� Be aware of very large and very little datasets. 

� To validate your results, don’t forget Vapnik’s statistical 
learning theory!


