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Further Experimental Results with

3D SOBS Algorithm for Moving Object Detection
Lucia Maddalena and Alfredo Petrosino

I. INTRODUCTION

In [1] we propose a system that is able to distinguish moving and stopped objects in digital image sequences taken from

stationary cameras. Our approach is based on self organization through a 3D artificial neural network to construct a model of

the scene background and a model of the scene foreground that can handle scenes containing moving backgrounds or gradual

illumination variations, helping in distinguishing between moving and stopped foreground regions.

In [2] we extend our previous research, including the complete description of a model-based framework to segment stopped

foreground objects against moving foreground objects, that is independent from the model chosen for the scene background

and foreground. Moreover, a formal and detailed description is provided for the 3D neural image sequence model, named

3D SOBS (3D Self-Organizing Background Subtraction), that is targeted for modeling the background and the foreground,

finalized at the detection of stopped objects.

However, the main objective of both the above described publications is the segmentation of moving and stationary objects,

rather than basic moving object detection. Therefore, in this technical report our aim is to provide a thorough analysis of moving

object detection accuracy achieved by the 3D SOBS neural image sequence model for background subtraction, also through

extensive experimental results on real image sequences. Specifically, qualitative and quantitative results will be described in

the following and compared with those obtained by other existing approaches.

II. QUALITATIVE EVALUATION

Experimental results for moving object detection achieved by the 3D SOBS algorithm have been produced for several im-

age sequences. Here we report results obtained on sequences belonging to the PETS2001 dataset, publicly available at

ftp://ftp.pets.rdg.ac.uk/ pub/ PETS2001, that represent typical situations critical for video surveillance systems and have been

adopted in recent literature (e.g. [3], [4]).

The testing sequence Dataset3 consists of 5336 frames of size 768 × 576, taken by two different cameras, and is challenging

in terms of multiple targets and significant lighting variations. For such sequence a ground truth is publicly available at

http://limu.ait.kyushu-u.ac.jp/en/dataset/, consisting of binary detection masks for several sequence frames (one every fifteen

frames), sub-sampled at a resolution of 320 × 240.

In Fig. 1 we report selected sequence frames taken from Camera1 and Camera2 (columns (a) and (c), respectively) and

the corresponding moving object detection results computed by the 3D SOBS algorithm (columns (b) and (d), respectively),

where green pixels superimposed on the original image indicate detected moving pixels.

Generally, the achieved detection is quite accurate, and moving background (such as the waving shadow of the tree on the left in

all the frames, as well the waving tree in the bottom center in column (c)) is successfully modeled by the 3D neural background

model. Moreover, although non-uniform strong illumination changes affect the entire image sequence, the 3D neural model

well adapts to such changes, including their contribution to the background model through updated weight vectors.

Few false positives can still be observed. Specifically, part of the shadows cast on the ground by moving people (e.g., in

frames 1446 and 2691 - first and third row of column (b)) is recognized as foreground: this is due to the fact that in such

frames illumination is quite strong and the projected shadows are too dark as compared to the ground. Lighter shadows (such

as the one of the moving man in frame 1881 - second row) have been successfully recognized. Moreover, in frame 3096 taken

from Camera2 (fifth row, column (d)) illumination changes are only slowly included into the background model. This is due

to the fact that in previous frames (see frame 3066 - fourth row, column (d)) the area covered by the shadow was correctly

detected as foreground due to a moving man; successively, illumination strongly decreased due to clouds, and selective update

of 3D SOBS algorithm has prevented the rapid inclusion of such changes into the background model.
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(a) (b) (c) (d)

Fig. 1. Selected frames from sequence Dataset3: (a) Original frame from Camera1 and (b) corresponding moving object detection result achieved by
the 3D SOBS algorithm (green pixels); (c) Original frame from Camera2 and (d) corresponding moving object detection result achieved by the 3D SOBS
algorithm.
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TABLE I
COMPARISON OF ACCURACY VALUES FOR SEQUENCE Dataset3-Camera1.

Recall Precision F1

MoG [5] 0.750 0.456 0.567
Adaptive MoG [6] 0.711 0.569 0.632
Parzen [7] 0.563 0.516 0.538
RRF [9] 0.375 0.224 0.280
LBP [10] 0.343 0.565 0.427
MoG+LBP [3] 0.711 0.846 0.773
Integrated [4] 0.779 0.691 0.732
SOBS [12] 0.738 0.682 0.709
3D SOBS [1], [2] 0.643 0.798 0.712

III. QUANTITATIVE EVALUATION

Results obtained by the proposed 3D SOBS algorithm on PETS2001 sequences have been compared with those obtained by

other existing algorithms, that will be referred to as MoG, Adaptive MoG, Parzen, RRF, LBP, MoG+LBP, Integrated, and

SOBS.

The Mixture of Gaussian (MoG) method [5] uses a fixed number of Gaussian distributions as a model for the values of

the background pixels and an on-line approximation to update the model. The Gaussian distributions are then evaluated to

determine which are the most likely to result from a background process. It can handle gradual (but not abrupt) illumination

changes.

The Adaptive MoG method [6] is a computationally effective variant of MoG that automatically changes the number of

Gaussian distributions for each pixel depending on the sequence background changes. It can handle gradual (but not abrupt)

illumination changes.

The Parzen method [7] allows to estimate the probability density function (pdf) for probabilistic modeling of pixel values

faster than the classical Kernel Density Estimation [8]. Here the adopted kernel function is a rectangular function and the pdf

is estimated by incremental updating using its value in the previous frame. It can handle gradual (but not abrupt) illumination

changes.

With the Radial Reach Filter (RRF) method [9] each pixel is classified as foreground or background based on the Radial

Reach Correlation defined to evaluate local texture similarity without suffering from illumination changes.

The Local Binary Pattern-based (LBP) method [10] uses LBP histograms for modeling image sequence blocks. A procedure

similar to the one adopted for MoG [5] is used for choosing the most probable background histograms and for updating them.

In the Hybrid MoG and LBP-based (MoG+LBP) method [3] the authors construct two different background models that are

robust to long-term and short-term illumination changes, respectively. The first background model is the pixel-based Adaptive

MoG presented in [6], while the second is a temporal variation of the spatial region-based model based on the LBP [10]

obtained including predictive values into the LBP. Suitable blending rules between the two models allow to classify pixels as

either foreground or background.

In the Integrated method [4] background modeling, based on spatio-temporal features, is obtained by a suitable combination

of three complementary approaches: pixel-level, region-level, and frame-level background modeling. Pixel-level modeling is

achieved by the Parzen method [7], region-level modeling is based on an improved RRF method where the background model

is updated according to background changes, while frame-level modeling is based on a brightness normalized background

model that is robust to non-uniform illumination changes.

The SOBS algorithm is the original 2D version of the 3D SOBS algorithm. It has been shown [12] that SOBS adaptive

model can handle scenes containing moving backgrounds, gradual illumination variations and camouflage, can include into the

background model shadows cast by moving objects, and achieves robust detection for different types of videos captured with

stationary cameras.

Parameter values for the 3D SOBS algorithm have been experimentally chosen as follows: the number n of model layers

has been fixed to 5; the number K of training frames has been fixed to 30; the neighborhoods size for the model updates has

been fixed to 3; the variance of the Gaussian low-pass filters specifying the weights for model updates has been fixed to 0.75;

the segmentation thresholds have been fixed as 0.1 for training and 0.0025 for testing; finally, the learning rates have been

fixed as 1 for training and 0.05 for testing.

In Tables I and II we report accuracy results on the two views of sequence Dataset3 for all considered methods; results for

the 3D SOBS and SOBS algorithms have been obtained as average measures over the whole image sequences, while other

results are those published in [3] and in [4]. The adopted metrics are defined as

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, F1 =

2 ∗Recall ∗ Precision

Recall + Precision
,

where TP, FN, FP are the total number of true positive, false negative, and false positive pixels, respectively. Recall and

Precision give the percentage of detected true positive pixels as compared to the total number of true positive pixels in the
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TABLE II
COMPARISON OF ACCURACY VALUES FOR SEQUENCE Dataset3-Camera2.

Recall Precision F1

Parzen [7] 0.728 0.468 0.570
RRF [9] 0.207 0.248 0.226
MoG+LBP [3] 0.429 0.765 0.550
Integrated [4] 0.655 0.697 0.675
SOBS [12] 0.715 0.610 0.658
3D SOBS [1], [2] 0.613 0.747 0.673

ground truth and of pixels detected by the method, respectively. Using such metrics, generally a method is considered good

if it reaches high Recall values, without sacrificing Precision. The F1 metric is the weighted harmonic mean of Precision and

Recall, and allows to obtain a single measure that can be used to “rank” different methods. All the considered measures attain

values in [0, 1], and the higher is the value, the better is the accuracy.

Results reported in Tables I and II confirm our previously reported qualitative analysis, highlighting that the 3D SOBS

algorithm performs quite well on the Dataset3 sequence taken from both cameras. Only the methods presented in [3] and

in [4], which have been specifically designed for non-uniform and abrupt illumination changes, attain in some cases higher

accuracy values. The Precision-Recall curve reported in Fig. 2 confirms our analysis of the the 3D SOBS algorithm accuracy.

Fig. 2. Precision-Recall curve for the 3D SOBS moving object detection algorithm on Dataset3.

A. Further Comparisons

Further comparisons with other existing algorithms have been performed on Wallflower sequences, publicly available at

http://research.microsoft.com/ en-us/um/people/jckrumm/WallFlower/TestImages.htm. Such sequences represent some of the

canonical problems for background subtraction highlighted in the paper of Toyama et al. [13], such as light changes, moving

background, cast shadows, bootstrapping, and camouflage. Hand-segmented background is given for one test frame of each

sequence, allowing to compare the obtained results on a pixel-by-pixel basis.

Accuracy results are reported in Table III, where results other than ours are those published in [13]. From such results

we can conclude that the adopted 3D neural model is almost perfectly suited for the representation of moving background

(sequence Waving Trees) and for the continuous background adaptation to gradual illumination changes (sequence Time of

Day). Moreover, the color space and the metric adopted for background subtraction, chosen as in [12], are quite adequate for

the discrimination of moving objects (sequence Camouflage). Although the background model is generally quite accurate, its

selective update prevents the approach to quickly adapt to rapid illumination changes (sequence Light Switch), and leads to

slow adaptation of the background model to the empty scene in the absence of initial empty frames (sequence Bootstrap).

However, the update of weight vectors of pixels that are close to the ones erroneously detected as foreground allows to mitigate

such effects in the long run.

Finally, it should be emphasized that the proposed low-level background subtraction approach does not include any higher

level computer vision module (such as tracking and object recognition); this means that higher level tasks, such as the recognition

of stationary moved objects (sequence Moved Object) or the recognition of new moving objects previously detected as belonging

to the background (sequence Foreground Aperture), obviously cannot be quickly achieved.
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(a) (b) (c)

Fig. 3. Selected frames from sequence Dataset3: (a) Original frame from Camera1 and (b) corresponding moving object detection result achieved by
the 3D SOBS algorithm (green pixels); (c) Original frame from Camera2 and (d) corresponding moving object detection result achieved by the 3D SOBS
algorithm.
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TABLE III
PERFORMANCE EVALUATION IN TERMS OF FALSE NEGATIVE PIXELS (FN) AND FALSE POSITIVE PIXELS (FP) ON THE WALLFLOWER DATASET [13].

Moved Time Light Waving Camou- Boot- Foreground
Object of Day Switch Trees flage strap Aperture

Mean + FN 0 949 1857 3110 4101 2215 3464
covariance FP 0 535 15123 357 2040 92 1290

Mixture of FN 0 1008 1633 1323 398 1874 2442
Gaussians FP 0 20 14169 341 3098 217 530

Block FN 0 1030 883 3323 6103 2638 1172
correlation FP 1200 135 2919 448 567 35 1230

Temporal FN 0 1151 752 2483 1965 2428 2049
derivative FP 1563 11842 15331 259 3266 217 2861

Bayesian FN 0 1018 2380 629 1538 2143 2511
decision FP 0 562 13439 334 2130 2764 1974

Eigen- FN 0 879 962 1027 350 304 2441
background FP 1065 16 362 2057 1548 6129 537

Linear FN 0 961 1585 931 1119 2025 2419
prediction FP 0 25 13576 933 2439 365 649

Wallflower FN 0 961 947 877 229 2025 320
FP 0 25 375 1999 2706 365 649

SOBS FN 0 478 1201 182 529 461 1817
FP 1070 40 11169 120 318 286 488

3D SOBS FN 0 483 1036 70 408 1352 1419
FP 1063 58 11285 195 258 270 428
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