
Consiglio Nazionale delle Ricerche 
Istituto di Calcolo e Reti ad Alte Prestazioni 

On the application 
of the spectral projected 

gradient method 
in image segmentation

L. Antonelli, V. De Simone, D. di Serafino

RT-ICAR-NA-2015-01 Febbraio 2015

Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR) 

– Sede di Napoli, Via P. Castellino 111, I-80131 Napoli,   Tel: +39-0816139508, Fax: +39-

0816139531, e-mail: napoli@icar.cnr.it, URL: www.na.icar.cnr.it

1



Consiglio Nazionale delle Ricerche 
Istituto di Calcolo e Reti ad Alte Prestazioni 

On the application 
of the spectral projected 

gradient method 
in image segmentation*

L. Antonelli 1, V. De Simone 2, D. di Serafino 2,1

Rapporto Tecnico N.:

RT-ICAR-NA-2015-01
Data:

Febbraio 2015

* Rapporto Tecnico sottomesso per la pubblicazione
1 Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sede di Napoli, via P. Castellino n. 111, 80131 Napoli, Italy
2 Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, viale A. Lincoln n. 5, 81100 Caserta, 

Italy

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del  

Consiglio Nazionale delle Ricerche.  Tali  rapporti,  approntati  sotto l’esclusiva responsabilità scientifica  

degli autori, descrivono attività di ricerca del personale e dei collaboratori dell’ICAR, in alcuni casi in un  

formato preliminare prima della pubblicazione definitiva in altra sede.
  

2



On the application of the spectral projected gradient method
in image segmentation
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Abstract We investigate the application of the non-

monotone spectral projected gradient (SPG) method
to a region-based variational model for image segmenta-
tion. We consider a “discretize-then-optimize” approach

and solve the resulting nonlinear optimization problem

by an alternating minimization procedure that exploits

an SPG algorithm by Birgin, Mart́ınez and Raydan

(SIAM J. Optim., 10(4), 2000). We provide a conver-

gence analysis and perform numerical experiments on
several images to evaluate the effectiveness of this pro-
cedure. The computational results show that our ap-

proach is competitive with a very efficient solver based

on the Split Bregman method.
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1 Introduction: background and motivations

Image segmentation is the process of partitioning an im-

age into regions that are “homogeneous” according to

some feature, such as intensity, texture or colour. This

process is generally aimed at identifying objects in the

image, thus it plays a fundamental role in computer

vision, e.g., for object detection, recognition, measure-

ment and tracking. Many successful methods for image
segmentations are based on variational models where
the regions of the desired partition, or their edges, are

obtained by minimizing suitable cost functionals (see,

e.g., [13,9,23,26] and the references therein).

Here we consider a region-based variational model

by Chan, Esedoḡlu and Nikolova [12], henceforth re-

ferred to as CEN model, which was proposed to over-

come difficulties associated with the minimization of

the non-convex Chan-Vese (CV) model [14]. The latter

is actually the Mumford-Shah model [27] restricted to
the case of piecewise constant two-phase segmentation;
its level-set formulation reads as follows:

min
c1,c2,φ

ECV (c1, c2, φ), (1)

where

ECV (c1, c2, φ) =

∫

Ω

|∇H(φ(x))| dx

+λ

(
∫

Ω

H(φ(x)) (c1 − ū(x))
2
dx

+

∫

Ω

(1−H(φ(x))) (c2 − ū(x))
2
dx

)

.

(2)

Here Ω ⊂ R
2 is an open bounded set with Lipschitz

boundary (generally a rectangle), ū(x) : Ω → R rep-

resents the image to be segmented, H is the Heaviside

function, φ : Ω → R is a Lipschitz-continuous function

whose zero level set represents the boundary ∂Σ of a set

Σ ⊂ Ω, c1, c2 ∈ R, and λ > 0 is a suitable regularization
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parameter. Solving (1) means finding the best approx-

imation to ū(x) among all the functions that take only
two values; c1 and c2 represent these values, while Σ

and Ω\Σ are the sets where they are taken, which pro-

vide a two-phase partition of Ω. The first term in the

right-hand side of (2) is a regularization term, which

penalizes the size of ∂Σ. For any fixed φ, the values of

c1 and c2 that minimize ECV are given by

c1 =

∫

Ω
ū(x)H(φ(x))dx
∫

Ω
H(φ(x))dx

,

c2 =

∫

Ω
ū(x)(1−H(φ(x)))dx
∫

Ω
(1−H(φ(x)))dx

,

(3)

i.e., by the mean values of ū(x) in the regions Σ and

Ω\Σ. Therefore, a natural approach to solve problem (1)

is to alternate between the computation of c1 and c2
through (3) and the minimization of ECV (c1, c2, φ) with

respect to φ. This minimization is usually performed by
using a gradient-descent scheme, where the first varia-

tion of ECV (c1, c2, φ) is computed by using a smooth

regularization of the Heaviside function [14]. However,

because of the non-convexity of the functional ECV

with respect to φ, this method may get stuck into local
minima, thus providing poor segmentations.

In order to overcome the previous problem, a convex
relaxation approach is used in the CEN model, which is

based on the idea of removing the constraint that ū(x)

be approximated by functions taking only two values.

Specifically, in [12, Theorem 2] it is proved that, for any

given (c1, c2), a global minimizer for the piecewise con-

stant two-phase Mumford-Shah model can be obtained

by solving the following convex problem:

min
u

ECEN (c1, c2, u),

s.t. 0 ≤ u ≤ 1,
(4)

where

ECEN (c1, c2, u) =

∫

Ω

|∇u| dx

+λ

(
∫

Ω

u(x) (c1 − ū(x))
2
dx

+

∫

Ω

(1− u(x)) (c2 − ū(x))
2
dx

)

,

(5)

and by taking

Σ = {x ∈ Ω : u(x) ≥ µ}, (6)

for almost any µ ∈ (0, 1).
Different methods have been proposed to solve prob-

lem (4). In [12] the constraint 0 ≤ u ≤ 1 is enforced by

using a penalty term and then applying the gradient-

descent technique to the resulting unconstrained prob-

lem. Regularized versions of |∇u| and of the penalty

term are used to deal with their non-differentiability. A

penalty approach, combined with a suitable splitting of

the resulting energy functional, is also used in [9]. In

this case, minimization is performed by exploiting the
dual formulation of the TV norm and applying a regu-
larization that allows the application of an alternating

solution procedure, based on a semi-implicit gradient-

descent algorithm and an explicit minimization formula

[1]. However, as observed in [23], the previous methods

may introduce too much regularization, possibly yield-
ing the elimination of fine segmentation details. Fur-
thermore, when explicit discretizations of the gradient
flow equation are used, the resulting numerical methods

are generally slow, because of the time step limitations

imposed by stability conditions.

The application of the Split Bregman (SB) method

to problem (4) has been proposed in [23] to deal with

the previous difficulties. This approach avoids regular-

ization and splits the problem into subproblems that

can be efficiently solved within an alternating mini-

mization scheme. Although the convergence of the SB

method has been proved when the subproblems are

solved exactly [24,28], it has been observed that ap-

proximate solutions can be used in practice without

deteriorating convergence speed [23]. It has been also

shown in [23] that this approach can be faster and more
accurate than the well-known algorithm for motion by
mean curvature graph-cut technique [11,17].

We note that alternating minimization methods for

problem (4), or for variants of it, can be also derived
in the general context of Lagrangian methods (see, e.g.,

[29,26]). There are indeed strong connections between

the alternating direction method of multipliers and the

SB method, as shown in [20,28].

In this article we investigate the application of non-
monotone spectral projected gradient (SPG) methods,

within an alternating minimization procedure, to the

CEN model. The interest for SPG methods is due to

their faster convergence with respect to classical gradi-

ent projection methods, which results from the combi-

nation of the spectral properties of the Barzilai and Bor-
wein (BB) steplength [2] with the nonmonotone line-
search technique by Grippo, Lampariello and Lucidi
(GLL) [25]. We note that the idea of using steplengths

related somehow to the spectrum of the Hessian of the

objective function, in order to speedup the convergence

of gradient methods, has gained widespread acceptance

in the last years; therefore, an increasing amount of
work has been devoted to designing and applying new
gradient methods that employ such steplengths (see,
e.g., [6,8,16,18,19,21,22,31]). In the context of image

processing, the BB steplength has been used, e.g., in [30]

to accelerate Chambolle’s gradient projection method

for total variation image restoration [10]. In this case,

the nonmonotone line-search technique by Dai and Flet-
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cher [15] has been applied to ensure global convergence.

Finally, it has been observed in [9] that the regular-

ization of |∇u| may impose strong limitations on the

steplength in classical explicit gradient-descent algo-

rithms. The use of the BB steplength, with a nonmono-

tone line-search technique, offers a possibility to over-

come this problem.

We consider a “discretize-then-optimize” approach,

i.e., we first consider a discretization of the CEN model

and then solve the resulting optimization problem. We

focus of the SPG2 algorithm proposed in [4]. The k-th
iteration of our minimization procedure consists of two

steps:

– computation of an approximation uk to u by ap-

plying an SPG2 step, with a suitable GLL-type line

search, to the discretized CEN functional where c1
and c2 are equal to the previously computed values

ck−1
1 and ck−1

2 ;
– computation of ck1 and ck2 by exact minimization, by

using a discrete version of (3) where u is set equal
to uk.

This method is proved to be globally convergent and

its effectiveness is illustrated through numerical exper-

iments on a large set of test problems.

This paper is organized as follows. In Section 2 we

provide a discrete formulation of the CEN model. In

Section 3 we describe our SPG-based minimization al-

gorithm and prove its convergence. In Section 4 we dis-

cuss the results of numerical experiments performed by

applying our algorithm to several images. We also make

a comparison with the SB technique presented in [23].

Finally, in Section 5, we draw some conclusions.

2 Discrete formulation

The image domain Ω is discretized by using a m × n
grid of pixels

Γ = {(i, j) : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} .

We identify each pixel with its center and denote by vi,j
the value in (i, j) of any function v defined in Ω. Now

we introduce some finite-difference operators that are

useful to present the discretization of the functional (5)

over the grid Γ . For any vi,j with (i, j) ∈ Γ , we set

δx+vi,j = vi+1,j − vi,j , δy+vi,j = vi,j+1 − vi,j ,

δx−vi,j = vi,j − vi−1,j , δy−vi,j = vi,j − vi,j−1,

δx0vi,j =
vi+1,j − vi−1,j

2
, δy0vi,j =

vi,j+1 − vi,j−1

2
,

where we assume

vi−1,j = vi,j for i = 0, vi,j−1 = vi,j for j = 0,

vi+1,j = vi,j for i = m− 1, vi,j+1 = vi,j for j = n− 1,

i.e., we define by replication the values of v with indices

outside Γ . To discretize the total variation term in (5)

we proceed as in [10]; however, since |∇u| is nondiffer-

entiable in 0, we use a classical regularization of it, i.e.,
we set

|∇u|i,j =

√

(

δx+ui,j

)2
+
(

δy+ui,j

)2
+ ε,

where ε is a small positive parameter. Then we consider

the following discretization of the functional ECEN :

E(c1, c2, u) =
∑

i,j

|∇u|i,j

+λ
∑

i,j

(

(c1 − ūi,j)
2
ui,j + (c2 − ūi,j)

2
(1− ui,j)

)

,

where the indices i and j in the sum run from 0 to m−1

and from 0 to n− 1, respectively.
Obviously, the function E(c1, c2, u) is continuously

differentiable. Its derivatives take the following form:

∂E

∂c1
= 2λ

∑

i,j

(c1 − ūi,j)ui,j ,

∂E

∂c2
= 2λ

∑

i,j

(c2 − ūi,j) (1− ui,j),

∂E

∂ui,j

= a0ui,j

−a1ui+1,j − a2ui−1,j − a3ui,j+1 − a4ui,j−1

+λ
(

(c1 − ūi,j)
2
− (c2 − ūi,j)

2
)

,

(7)

where

a1 =

(

√

(

δx+ui,j

)2
+
(

δy+ui,j

)2
+ ε

)−1

,

a2 =

(

√

(

δx−ui,j

)2
+
(

δy+ui−1,j

)2
+ ε

)−1

,

a4 =

(

√

(

δx+ui,j−1

)2
+
(

δy−ui,j

)2
+ ε

)−1

,

a3 = a1, a0 = a1 + a2 + a3 + a4.

(8)

By imposing ∂E/∂c1 = ∂E/∂c2 = 0 we trivially obtain

the values of c1 and c2 that minimize E for any fixed u:

c1 =

∑

i,j ūi,jui,j
∑

i,j ui,j

,

c2 =

∑

i,j ūi,j(1− ui,j)
∑

i,j(1− ui,j)
.

(9)

From (9) and 0 ≤ ui,j ≤ 1 it follows that

umin ≤ c1, c2 ≤ umax,
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where umin = mini,j ūi,j and umax = maxi,j ūi,j . Note

also that (9) provides a discretization of (3) whereH(φ(x))
has been replaced by u(x).

In the following we focus on the solution of the prob-

lem

min E(c1, c2, u),

s.t. 0 ≤ u ≤ 1,

umin ≤ c1, c2 ≤ umax,

(10)

where 0 ≤ u ≤ 1 is intended componentwise.

Henceforth, to simplify the notation, we denote by

G the vector ∇E, by Gc the vector with components

∂E/∂c1 and ∂E/∂c2, and by Gu the vector with com-

ponents ∂E/∂ui,j (we implicitly assume some ordering

in the grid of pixels). For any vectors v and w, we use
the notation (v, w) to denote (vT , wT )T ; furthermore,

we denote by 〈·, ·〉 the Euclidean inner product and by
‖ · ‖ the induced vector norm.

3 An SPG-based alternating method for the

discretized CEN model

We compute a solution to problem (10) by exploit-

ing the SPG2 spectral projected gradient method pro-

posed in [4] within an alternating minimization frame-

work. Therefore, we first provide a short description of

SPG2. Given a closed convex set X ⊂ R and a func-

tion f : X → R that is continuously differentiable in an
open set containing X, the SPG2 method attempts to

compute a minimizer of f in X by building a sequence

of approximate solutions as follows:

xk+1 = xk + θkdk.

Here the search direction dk is defined as

dk = PX

(

xk − αk∇f(xk)
)

− xk,

where PX denotes the orthogonal projection on X, αk

is obtained through the BB formula

αk
BB =

〈sk−1, sk−1〉

〈sk−1, yk−1〉
, (11)

with sk−1 = xk−xk−1 and yk−1 = ∇f(xk)−∇f(xk−1),

and the steplength θk is such that the Grippo-Lampariello-
Lucidi (GLL) condition [25] holds, i.e.,

f(xk+1) ≤ max
0≤j≤min{k,ν−1}

f(xk−j)+γ θk〈∇f(xk), dk〉(12)

with ν ∈ N and γ ∈ (0, 1). More precisely, given a

“small” parameter αmin > 0 and a “large” parameter

αmax > 0, the value of αk is set as

αk =

{

min
{

αmax,max
{

αmin, α
k
BB

}}

, if αk
BB > 0,

αmax, otherwise.
(13)

A steplength θk satisfying (12) is computed by using an

iterative procedure, starting from the trial value θk0 = 1.
That is, if θkj−1 is such that (12) does not hold, then a

new candidate steplength θkj is computed by using a

classical one-dimensional quadratic interpolation tech-

nique; furthermore, given the safeguard parameters σ1

and σ2, with 0 < σ1 < σ2 < 1, if θkj does not belong to

[σ1, σ2θ
k
j−1], then θkj = θkj−1/2.

It can be proved that the SPG2 algorithm is conver-
gent in the sense that any limit point x̄ of the sequence
{

xk
}

generated by it is a stationary point of f in X, or
equivalently

‖PX(x̄−∇f(x̄))− x̄‖ = 0.

Our alternating minimization method based on SPG2

has the following structure: given (uk, ck1 , c
k
2) such that (9)

holds, we first compute uk+1 by applying an SPG step
to E(u, ck1 , c

k
2) with (ck1 , c

k
2) fixed, and then compute

ck+1
1 and ck+1

2 by (9), using uk+1. However, in the com-

putation of uk+1 we require that

E
(

ck1 , c
k
2 , u

k+1
)

≤ max
0≤j≤min{k,ν−1}

E
(

ck−j
1 , ck−j

2 , uk−j
)

+ γ θk
〈

Gu

(

ck1 , c
k
2 , u

k
)

, dku
〉

,

(14)

where dku is the SPG search direction, i.e., the GLL

condition involves values of c1 and c2 different from the

fixed ones ck1 and ck2 (unless ν = 1). On the other hand,

since Gc

(

ck1 , c
k
2 , u

k
)

= 0, each iteration of the alternat-

ing minimization procedure can be regarded as the ap-
plication of a projected gradient step to the function E

with respect to all variables, followed by an “improve-
ment” of the approximate solution resulting from that
step. Furthermore, letting dk =

(

dku, c
k+1
1 − ck1 , c

k+1
2 − ck2

)

,

the GLL condition holds with respect to all variables,

i.e.,

E
(

ck+1
1 , ck+1

2 , uk+1
)

≤ max
0≤j≤min{k,ν−1}

E
(

ck−j
1 , ck−j

2 , uk−j
)

+ γ θk
〈

G
(

ck1 , c
k
2 , u

k
)

, dk
〉

,

(15)

although
(

ck+1
1 , ck+1

2 , uk+1
)

is not obtained through a

line search along dk.

The SPG-based Alternating procedure described so

far, henceforth referred to as SPG-A, is summarized in

Algorithm 3.1, where V = [umin, umax]
2 × [0, 1]mn and

W = [0, 1]mn. We note that, since Gc

(

ck1 , c
k
2 , u

k
)

= 0

for all k, the stopping condition reduces to

∥

∥PW

(

uk −Gu

(

ck1 , c
k
2 , u

k
))

− uk
∥

∥ < tol.

We also observe that Algorithm SPG-A differs from

the inexact block coordinate descent methods presented
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Algorithm 3.1 (SPG-A)

given tol > 0, αmax > αmin > 0, α0 ∈ [αmin, αmax], 0 < σ1 < σ2 < 1, ν ∈ N, γ ∈ (0, 1)

choose u0 and compute c01 and c02 through (9), using u0

set k = 0

while
∥

∥PV

((

ck1 , c
k
2 , u

k
)

−G
(

ck1 , c
k
2 , u

k
))

−
(

ck1 , c
k
2 , u

k
)∥

∥ ≤ tol do

compute dku = PW

(

uk − αkGu

(

ck1 , c
k
2 , u

k
))

− uk

compute uk+1 = uk+θkdku, where θ
k satisfying (14) is obtained by safeguarded quadratic interpolation

compute ck+1
1 and ck+1

2 through (9), using uk+1

compute αk+1 according to (13) and (11), where sk = uk+1 − uk and yk = Gu(c
k+1
1 , ck+1

2 , uk+1)
−Gu(c

k
1 , c

k
2 , u

k)

set k = k + 1

end while

in [7], because it does not satisfy conditions (3.5) in [7]

and uses a nonmonotone line-search technique.
Now we prove that Algorithm SPG-A preserves the

convergence properties of SPG2. To this end, we first

observe that for all (c1, c2, u) ∈ V and t ∈ (0, αmax],

〈G(c1, c2, u), G
t(c1, c2, u)〉

≤ −
1

t
‖Gt(c1, c2, u)‖

2

≤ −
1

αmax

‖Gt(c1, c2, u)‖
2,

(16)

where the notation

Gt(c1, c2, u) = PV ((c1, c2, u)− tG(c1, c2, u))

−(c1, c2, u)

has been used for simplicity. This is a known result

[4, Lemma 2.1]), which follows straightforwardly from

the properties of the projection on a convex set (see,

e.g., [3, Proposition 2.1.3, (b)]). In order to shorten the
notation, we also define

Gt
u(c1, c2, u) = PW (u− tGu(c1, c2, u))− u.

The convergence of Algorithm SPG-A is stated in the

following theorem.

Theorem 1 Algorithm SPG-A is well defined and any

limit point of the sequence
{(

ck1 , c
k
2 , u

k
)}

generated by

it is a stationary point of E in V .

Proof This proof closely follows the proof of Theorem 2.4

in [4], however we outline it for the sake of complete-
ness.

If
(

ck1 , c
k
2 , u

k
)

is not a stationary point for E in V ,

then, by (16), for all t ∈ (0, αmax] we have

〈

G
(

ck1 , c
k
2 , u

k
)

, Gt
(

ck1 , c
k
2 , u

k
)〉

≤ −
1

t

∥

∥Gt
(

ck1 , c
k
2 , u

k
)∥

∥

2

≤ −
1

αmax

∥

∥Gt
(

ck1 , c
k
2 , u

k
)∥

∥

2
< 0.

It follows that

〈

Gu

(

ck1 , c
k
2 , u

k
)

, dku
〉

=
〈

Gu

(

ck1 , c
k
2 , u

k
)

, Gt
u

(

ck1 , c
k
2 , u

k
)〉

< 0,

because Gc

(

ck1 , c
k
2 , u

k
)

= 0 for all k. Therefore, dku is

a descent direction for E
(

ck1 , c
k
2 , u

)

in uk, and a step-

size θk such that (14) holds can be computed with a

finite number of trials. Thus, Algorithm SPG-A is well

defined.

Now we suppose that (c̄1, c̄2, ū) ∈ V is a limit point
of the sequence generated by Algorithm SPG-A. With-

out loss of generality, we can assume that
{(

ck1 , c
k
2 , u

k
)}

converges to (c̄1, c̄2, ū). We distinguish two cases.

Case 1: inf θk = 0.

By contradiction we suppose that (c̄1, c̄2, ū) is not

a stationary point, i.e., Gα(c̄1, c̄2, ū) 6= 0 for all α > 0.
From Gc

(

ck1 , c
k
2 , u

k
)

= 0 it follows that Gc(c̄1, c̄2, ū) = 0

and hence Gα
u(c̄1, c̄2, ū) 6= 0. Then, by reasoning as in

the proof of Theorem 2.4 in [4], we find that there exists

δ > 0 such that for all sufficiently large k,

〈

Gu

(

ck1 , c
k
2 , u

k
)

,
Gα

u

(

ck1 , c
k
2 , u

k
)

∥

∥Gα
u

(

ck1 , c
k
2 , u

k
)∥

∥

〉

< −
δ

2
,

for all α ∈ [αmin, αmax].

(17)

Since inf θk = 0, there exists K ⊆ N such that

lim
k∈K

θk = 0.

Then, moving from the way θk is chosen to satisfy the

GLL condition (14) and proceeding again as in [4], we

find that for all sufficiently large k ∈ K, there exists ρk,

with 0 < σ1 ≤ ρk ≤ σ2, and tk ∈ [0, θk/ρk] such that

〈

Gu

(

ck1 , c
k
2 , u

k + tkdku
)

, dku
〉

> γ
〈

Gu

(

ck1 , c
k
2 , u

k
)

, dku
〉

.
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Hence, by taking a subsequence
{

dku
}

k∈K1⊆K
such that

dku/‖d
k
u‖ is convergent with limit d̄u, we get

〈

Gu(c̄1, c̄2, ū), d̄u
〉

= 0.

From dku = Gαk

u

(

ck1 , c
k
2 , u

k
)

it follows, by continuity,
that for all sufficiently large k ∈ K1,

〈

Gu

(

ck1 , c
k
2 , u

k
)

,
Gα

u

(

ck1 , c
k
2 , u

k
)

∥

∥Gα
u

(

ck1 , c
k
2 , u

k
)
∥

∥

〉

> −
δ

2
,

which contradicts (17).

Case 2: inf θk ≥ ρ > 0.

By contradiction, we suppose that (c̄1, c̄2, ū) is not a

constrained stationary point. Then ‖Gα(c̄1, c̄2, ū)‖ > 0
for all α ∈ (0, αmax] and hence there exists δ > 0 such

that ‖Gα(c̄1, c̄2, ū)‖ ≥ δ for all α ∈ [ρ, αmax].

Let l(k) be an integer such that k−min{k, ν−1} ≤

l(k) ≤ k and

E
(

c
l(k)
1 , c

l(k)
2 , ul(k)

)

= max
0≤j≤min{k,ν−1}

E
(

ck−j
1 , ck−j

2 , uk−j
)

.

By reasoning as in the proof of Theorem 2.4 in [4],

we find that
{

E
(

c
l(k)
1 , c

l(k)
2 , ul(k)

)}

is a nonincreasing

sequence; furthermore, for k sufficiently large, we have
∥

∥

∥
Gα

(

c
l(k)
1 , c

l(k)
2 , ul(k)

)∥

∥

∥
≥ δ/2.

Then, by (15) and (16), we get

E
(

c
l(k)
1 , c

l(k)
2 , ul(k)

)

≤ E
(

c
l(k)−1
1 , c

l(k)−1
2 , ul(k)−1

)

−
γρ

αmax

∥

∥

∥
Gαl(k)−1

(

c
l(k)−1
1 , c

l(k)−1
2 , ul(k)−1

)
∥

∥

∥

2

≤ E
(

c
l(k)−1
1 , c

l(k)−1
2 , ul(k)−1

)

−
γδ2ρ

4αmax

.

It follows that

lim
k→∞

E
(

c
l(k)
1 , c

l(k)
2 , ul(k)

)

= −∞,

which is a contradiction because, by continuity,

lim
k→∞

E
(

c
l(k)
1 , c

l(k)
2 , ul(k)

)

= E (c̄1, c̄2, ū) .

This completes the proof. ⊓⊔

It is worth noting that Algorithm SPG-A can be

applied in a more general context than the one consid-

ered in this work. More precisely, let X × Y ⊂ R
p ×R

q

be a closed convex set and F (x, y) a real-valued func-

tion that is continuously differentiable in an open set

containing X × Y . If we assume that for all y ∈ Y

argminx∈X F (x, y) exists and can be exactly computed,
then we can apply Algorithm SPG-A to F (x, y), with x

playing the role of (c1, c2) and y the role of u. Of course,
the convergence of the algorithm still holds.

4 Computational experiments

We performed numerical experiments to evaluate the

effectiveness of our approach. To this aim, we applied

the Algorithm SPG-A to several gray-scale images with

different sizes and features, which are widely used in
the literature of image segmentation (see Figure 1). We
considered both real scenes (a–f) and synthetic pictures
(g–l), including noisy (b, k, l) or blurred (i) ones. The

images have either uniform or nonuniform background;

furthermore, they show a single object or multiple ones.

Algorithm SPG-A was implemented in C, exploiting
the implementation of Algorithm SPG2 [5] available as

a part of the TANGO project (http://www.ime.usp.br
/∼egbirgin/tango/). It was run under Matlab (R2011b,

v. 7.13), through a MEX-interface, using the Image Pro-

cessing Toolbox to read and display images. The C code

was compiled by using gcc (v. 4.7.2) and the exper-

iments were performed on an Intel Core i5 processor

with clock frequency of 2.7 GHz and 8 GB of RAM.

The parameters in the objective function E(c1, c2, u)

were set as λ = 1 and ǫ = 10−6, and the threshold pa-

rameter in (6) as µ = 0.5. Following the implementa-
tion of SPG2, the ℓ∞ norm was used instead of the ℓ2
norm in the SPG-A stopping criterion, with tol = 10−6.

A maximum number of iterations, maxit = 1000, and

of function evaluations, fmax = 10000, was also con-

sidered. The values ν = 10 and γ = 10−4 were used in

the GLL condition (14). The parameters αmin, αmax,

σ1 and σ2were left equal to their default values in SPG2.
The initial value of α was also chosen as in SPG2, i.e.,

α0 = min{αmax,max{αmin, 1/‖G
1
u(c

0
1, c

0
2, u

0‖∞}}.

For each test problem we used three choices of the

initial function u0:

– ū[0,1], the image to be segmented, with intensity val-

ues scaled between 0 and 1;

– uws, a small white square (p× q pixels, with p ≪ m

and q ≪ n) on black background;

– ubs, a small black square(p × q pixels, with p ≪ m
and q ≪ n) on white background.

Since the three functions practically led to the same
segmentations, we report here the results obtained with

u0 = ū[0,1].

For comparison purpose, we also applied to the CEN

model the SPG2 algorithm and the SB-based algorithm
described in [23], for all the test problems. The for-
mer was chosen to evaluate the behaviour of our ap-

proach with respect to a straightforward application of

the spectral projected gradient algorithm; the latter is

known to be very efficient on the segmentation problem

considered in this work and therefore it was taken as a

reference algorithm for our analysis. The SB approach
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(a) cameraman – 204 × 204 (b) carplate – 285 × 224 (c) granite – 225 × 225

(d) squirrel – 230 × 167 (e) watercoins – 252 × 312 (f) zebras – 640 × 512

(g) blava – 228 × 266 (h) hoffman – 200 × 200 (i) circles – 320 × 240

(j) ninetyeight – 750 × 562 (k) shou – 344 × 500 (l) spiral – 329 × 289

Fig. 1 Test images: real scenes (a-f) and synthetic pictures (g-l). The number of pixels (m×n) of each image is specified after
the name. The images have been resized using different scalings to fit the figure layout.
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computes an approximation uk+1 to u by performing

the following steps:

(uk+1, dk+1)

= argmin
0≤u≤1; d

∫

Ω

(

|d|+ λur +
η

2
|d−∇u− bk|

2
)

dx, (18)

bk+1 = bk +∇uk − dk, (19)

where r = (c1− ū)2−(c2− ū)2. Problem (18) is approx-

imately solved by an alternating minimization proce-

dure, where uk+1 is obtained by applying the Gauss-

Seidel method to the Euler-Lagrange equations (with
d = dk) and projecting the computed solution in [0, 1],

while dk+1 is obtained by applying the so-called shrink

operator (see [23] for more details).

The above-mentioned implementation of SPG2 was
used in the experiments, with the same values of the
parameters as in SPG-A. Concerning the SB approach,

the code available from http://www.xavier-bresson.

tk was applied. This code was modified to employ dou-

ble precision as in SPG-A and SPG2; furthermore, its
native stopping criterion for the outer iterations was

substituted by the stopping criterion used in SPG-A
and SPG2, in order to make a fair comparison. The
parameter η in (18) was set equal to 1; the stopping

criterion for the Gauss-Seidel iterations was unchanged.

Details about the behaviour of the algorithms SPG-

A, SPG2 and SB are given in Table 1. For all the algo-
rithms we show the number of iterations, nit, performed

to satisfy the stopping criterion. For SPG-A and SPG2

we also show the number of objective function evalu-

ations, nf, each requiring O(mn) floating-point opera-

tions, where m×n is the size of the image. The number
of gradient evaluation is equal to the number of iter-

ations, therefore, we do not report it (each gradient
evaluation costs O(mn) floting-point operations plus

the computation of the square roots in (8)). For the

SB algorithm we also show the number of Gauss-Seidel

iterations, nGS ; note that each of these iterations has a

computational cost comparable with the function eval-

uation performed in SPG-A and SPG2, i.e., O(mn). As

for the gradient evaluations in SPG-A and SPG2, we

do not report the number of updates of dk+1 and bk+1,

since it is equal to nGS (each update is O(mn)). We

also do not report the objective function values at the

computed solution, since they generally agree up to 7

significant digits (there are some exceptions for SPG-

2). As a consequence, the resulting segmentations are

practically the same. Therefore, we show only the seg-

mentations obtained with SPG-A (see Figure 2).

We see that SPG-A is much faster than SPG2. SPG-

A generally achieves the required accuracy in at most

7 iterations, with at most 15 objective function evalu-

ations, while SPG2 requires a much larger number of

IMAGE
SPG-A SPG2 SB
nit nf nit nf nit nGS

(a) cameraman 5 11 72 104 5 10
(b) carplate 3 7 118 209 4 8
(c) granite 7 15 242 381 7 14
(d) squirrel 4 9 60 76 4 8
(e) watercoin 3 7 46 57 3 6
(f) zebras 5 11 336 571 5 10
(g) blava 3 7 25 29 3 6
(h) hoffman 2 5 42 55 2 4
(i) circles 3 7 44 53 3 6
(j) ninetyeight 3 7 168 309 4 8
(k) shou 3 7 142 212 3 6
(l) spiral 6 13 454 788 7 15
noisy cameraman 7 15 283 527 8 16
noisy ninetyeight 5 11 — — 5 10

Table 1 Numerical comparison of SPG-A, SPG2 and SB
(“—” indicates that the required accuracy has not been
achieved within the maximum number of iterations).

iterations and objective function evaluations. This be-

haviour is more evident for images with particular tex-

ture, such as “granite”, “zebras” or “ninetyeight”, or

corrupted by non-negligible noise, such as “carplate”,

“shou” and “spiral”. The large increase in the num-

ber of SPG2 iterations because of noise is confirmed by

further numerical experiments, performed adding noise
to some images. For example, in the last two rows of
Table 1 we report the results obtained after corrupt-
ing the real image “cameraman” and the synthetic one

“ninethyeight” with Gaussian noise having zero mean

and standard deviation values of 15 and 25, respectively

(the corrupted images are shown in the left column of

Figure 3). We see that the noise strongly deteriorates
the performance of SPG-2, while it slightly affects the
behaviour of SPG-A.

The SB-based algorithm shows about the same be-

haviour as SPG-A in terms of iterations and hence of
computational cost. As previously observed, both meth-
ods produce the same segmentations of the images of

the original test set. This is also true for the images ob-
tained by adding Gaussian noise, whose segmentations
are shown in the right column of Figure 3.

We conclude this section by observing that the qual-

ity of the segmentations produced by SPG-A is gener-
ally good, since the “meaningful” regions of each image
are identified.

5 Conclusions

We presented an alternating minimization procedure

called SPG-A, which exploits the nonmonotone SPG

method for solving the formulation of segmentation prob-

lems provided by the CEN model. The choice of the

SPG method was motivated by its steplength selection
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(a) cameraman (b) carplate (c) granite

(d) squirrel (e) watercoins (f) zebras

(g) blava (h) hoffman (i) circles

(j) ninetyeight (k) shou (l) spiral

Fig. 2 Segmentations of the test images using SPG-A.
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noisy cameraman

noisy ninetyeight

Fig. 3 Images corrupted by Gaussian noise and corresponding segmentations by SPG-A.

strategy, allowing faster convergence than classical gra-

dient methods. We proved that the SPG-A algorithm

is globally convergent to a constrained stationary point

of the discretized CEN model. Numerical experiments
on several images widely used in the literature of image
segmentation show that SPG-A is competitive with the

SB algorithm presented in [23], which is very effective

on the segmentation model considered in this work.

Acknowledgements We wish to thank Giovanni Pisante
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segmentation.
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