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Introduction

• Supervised learning refers to the capability of a 
system to learn from examples (training set).

• The trained system is able to provide an answer 
(output) for each new question (input). 

• Supervised means the desired output for the 
training set is provided by an external teacher.

• Binary classification is among the most 
successful methods for supervised learning. 

F. Cucker and S. Smale On the mathematical foundation of learning. 
Bulletin of the American Mathematical Society, 39(1), 1-49, 2001.



Applications

• A bank classifies customer loan requests in good and 
bad, depending on their ability to pay back. 

• Inland revenue tries to discover more tax evaders
starting from the characteristics of known ones. 

• A car built-in system detects if a walking pedestrian is 
going to cross the street.

• A decision support system automatically discards medical 
analysis of patients not showing a specific pattern.

T. Poggio and S. Smale The Mathematics of Learning: Dealing with Data
AMS Notice 537-544, 2003.



Applications

• Many applications in biology and medicine: 
– Tissues that are prone to cancer can be detected with 

high accuracy, 
– New DNA sequences or proteins can be tracked down 

to their origins. 
– Protein folding provides important information on 

protein expression level.
– Identification of new genes or isoforms of gene 

expressions in large datasets. 
– Analysis and reduction of data spatiality and principal 

characteristics for protein determination.

V. Boginski, P. Pardalos, A. Vazacopoulos Network-based Models and Algorithms in DM & 
KD. Handbook of Combinatorial Optimization, Kluwer (5), 217-258, 2004



Linear discriminant planes
• Consider a binary classification task with points in two 

linearly separable sets.
– There exists a plane that classifies all points in the two sets

• There are infinitely many planes that correctly classify 
the training data.

A BBA

K. Bennet and C. Campbell Support Vector Machines: Hype or Hallelujah?, SIGKDD Expl., 
2, 2, 1-13, 2000.



Best plane
• To construct the plane “furthers” from both classes, we 

examine the convex hull of each set.

• The best plane bisects closest points in the convex hulls.
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SVM classification
• A different approach, yielding the same solution, is to 

maximize the margin between support planes
– Support planes leave all points of a class on one side

• Support planes are pushed apart until they “bump” into 
a small set of data points (support vectors).
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SVM classification
• Support Vector Machines are the state of the art for the 

existing classification methods.

• Their robustness is due to the strong fundamentals of 
statistical learning theory.

• The training relies on optimization of a quadratic convex 
cost function, for which many methods are available.
– Available software includes SVM-Lite and LIBSVM. 

• These techniques can be extended to the nonlinear 
discrimination, embedding the data in a nonlinear space 
using kernel functions.



A different approach
• The binary classification problem can be formulated as a 

generalized eigenvalue problem (GEP). 
• The problem can be restated as: find two hyper planes 

that describe the two classes.

A BBA

O. L. Mangasarian and E. W. Wild Multisurface Proximal Support Vector Classification 
via Generalized Eigenvalues. Data Mining Institute Tech. Rep. 04-03, June 2004.



GEP formulation

Find a plane x’w1=γ1 the closer to A and the 
farther from B:

min
w,γ6=0

kAw− eγk
kBw− eγk



GEP technique

Let:

Previous equation becomes:

Raleigh quotient of Generalized Eigenvalue Problem

Gx=λHx.

min
z∈Rm

z0Gz
z0Hz

G = [A −e]0[A −e], H = [B −e]0[B −e], z = [w0 γ]0

min
w,γ6=0

kAw− eγk
kBw− eγk



GEP technique

Conversely, to find the plane closer to B and further 
from A we need to solve:

which has the same eigenvectors of the previous 
problem and reciprocal eigenvalues.

We only need to evaluate the eigenvectors related to 
min and max eigenvalues of Gx=λHx.

min
w,γ6=0

kBw− eγk
kAw− eγk



GEP technique

Let [w1 γ1] and [wm γm] be eigenvectors associated to min and 
max eigenvalues of Gx=λHx:
• a ∈ A closer to x'w1 -γ1 =0 than to x'wm-γm=0, 

• b ∈ B closer to x'wm-γm=0 than to x'w1-γ1=0.



Example

Let:

Set G=[A -e]' [A -e] and H=[B -e]' [B -e], we obtain:

Min and max eigenvalues of Gx=λHx are λ1=0 and λ3=∞
and the respective eigenvectors:

x1=[1 0 2],   x2=[1 -1 0].
The resulting planes are x = 2 and x – y = 0, which are 
closer to one set and further from the other.

A =

"
2 0
2 1

#
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0 0
1 1

#
,

G =

⎡⎢⎣ 8 2 −4
2 1 −1
−4 −1 2

⎤⎥⎦ , H =

⎡⎢⎣ 1 1 −1
1 1 −1
−1 −1 2

⎤⎥⎦ .



Regularization

• A and B can be rank-deficient.

• G and H are always rank-deficient, 
– the product of matrices of dimension (n +1 × n) is of 

rank at least n ⇒ 0/∞ eigenvalue.

• Do we need to regularize the problem to obtain a 
well posed problem?



A first solution

• Mangasarian et al. proposes GEPSVM:

• Only minimum eigenvalue/eigenvector for each problem.
• No gain using computational kernels for single eigenvalue 

and eigenvector computation.

min
w,γ 6=0

kAw− eγk2 + δkzk2
kBw − eγk2 ,

min
w,γ6=0

kBw− eγk2+ δkzk2
kAw− eγk2 ,



A useful theorem 

Consider GEP Gx=λHx and the transformed G1x=λH1x
defined by:

for each choice of scalars τ1, τ2, δ1 and δ2, such that the 2 × 2 
matrix

is nonsingular.

Then G*x=λ H*x has the same eigenvectors of Gx=λHx.

Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York, 
NY, 1992.

G∗ = τ1G− δ1H, H∗ = τ2H − δ2G,

Ω =

Ã
τ2 δ1
δ2 τ1

!



Linear case
• In the linear case, the theorem can be applied. For 

τ1=τ2=1 and δ1=δ2=δ,  the transformed problem is:

• As long as δ ≠ 1, matrix Ω is non-degenerate. 
• This transformation works if, in each class of the training 

set, there is a number of linearly independent points 
equal to the number of features.
– prob (Ker(G) ∩ Ker(H) ≠ 0) = 0

min
w,γ 6=0

kAw− eγk2 + δkBw − eγk2
kBw− eγk2 + δkAw − eγk2.

M.R. Guarracino On Classification Methods for Mathematical Models of Learning. Rapp. Tec. 3.246.1572 del 
Gruppo di Ottimizzazione e Ricerca Operativa, Dip. di Matematica, Univ. di Pisa, Febbraio 2005.



Nonlinear case
• A standard technique to obtain greater separability between 

sets is to embed the points into a nonlinear space, via kernel 
functions, like the gaussian kernel : 

• Each element of kernel matrix is:

where

K. Bennett and O. Mangasarian, Robust Linear Programming Discrimination of Two Linearly
Inseparable Sets, Optimization Methods and Software, 1, 23-34, 1992.

K(xi, xj) = e−
kxi−xjk2

σ

K(A,C)i,j = e−
kAi−Cjk2

σ

C =
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B
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Nonlinear case
• Using a gaussian kernel the problem becomes:

to produce the proximal surfaces:

• The associated GEP involves matrices of the order of the 
training set and rank at most the number of features.

min
w,γ6=0

kK(A, C)u− eγk2
kK(B,C)u− eγk2

K(x, C)u1− γ1 = 0, K(x,C)u2− γ2 = 0



Nonlinear case
• Matrices are deeply rank deficient and the problem is ill 

posed. 
• We propose to generate the two proximal surfaces:

solving the problem

where KA and KB are main diagonals of K(A,C) and K(B,C). 

K(x, C)u1− γ1 = 0, K(x,C)u2− γ2 = 0

min
w,γ6=0

kK(A,C)u− eγk2+ δkK̃Bu− eγk2
kK(B,C)u− eγk2+ δkK̃Au− eγk2

~ ~

M. R. Guarracino, C. Cifarelli,  O. Seref, P. M.Pardalos, A Classification Method based on 
Generalized Eigenvalue Problems, submitted to OMS, 2005.



Numerical experiments
• Performance on benchmark data sets publicly available.

– Data from UCI, Odewahn, and IDA repository. 

• Accuracy results for linear and nonlinear kernel SVMs
and GEPSVMare taken from literature.

• Kernel parameters have been taken from literature.

M.R. Guarracino A Classification Method  based on Generalized Eigenvalue Problems, 
Optimization in Medicine, Coimbra, July 2005.



Classification accuracy: linear kernel

98.3098.6098.24142462GalaxyBright
75.7073.6074.918768PimaIndians

83.6081.8086.0513297ClevelandHeart
89.0086.7087.607300NDC

SVMsGEPSVMReGECdimn+kdataset

Accuracy results have been obtained using ten fold cross 
validation



Elapsed time: linear kernel

21.1281.20270.5e-30.3e-3GalaxyBright
48.80915.8732.4e-041.2e-04PimaIndians

0.38019.9e-033.6e-041.9e-04ClevelandHeart

22.0020.89910.2e-030.1e-03NDC

SVMlightLIBSVMGEPSVMReGECdataset

Results computed on Xeon 3.2GHz, 6GB RAM, RH Linux, 
Matlab 6.5. 

Matlab function eig used for GEPSVM and ReGEC. 
Latest releases of libsmv and SVMlight used.



Classification accuracy: gaussian kernel

89.1585.5384.440.21.e-0524900400Banana
77.3675.7775.291501.e-0332051150Titanic
65.8059.6358.2331.e-039400666Flare-solar
90.2187.7088.561501.e-03214600400Waveform
83.0581.4382.061201.e-0313100170Heart
95.2092.7192.760.81.e-03575140Thyroid
75.6669.3670.265001.e-0320300700German
76.2174.7574.565001.e-038300468Diabetis
73.4971.7373.40501.e-03977200Breast-cancer
SVMGEPSVMReGECσδmtestn+kdataset

Accuracy results have been obtained using ten random
splits provided by IDA repository



Elapsed time: gaussian kernel

1.35050.03443.11020.4989Banana
7.19530.00320.11340.0269Titanic
4.45240.142916.26581.8737Flare-solar
0.22280.09164.4090.5962Waveform
0.13720.01720.21390.0316Heart
0.07810.00530.12080.0243Thyroid
0.40050.285525.23493.8177German
0.20220.13235.87431.1474Diabetis
0.11880.02290.35450.0698Breast-cancer
SVMlightLIBSVMGEPSVMReGECdataset



Work in progress

• A parallel eigensolver for large sparse matrices has been 
implemented and tested.

• Its generalization to GEP is in sight.

• A parallel version of ReGEC has been implemented. 
Tests of its performance are in progress.

M.R. Guarracino - HPEC: High Performance Eigenvalue Computation, a software for the 
evaluation of large sparse eigenvalue problems - Parallel Matrix Algorithms and Applications, 
Marsiglia, Ottobre 2004.
M.R. Guarracino, F. Perla, P. Zanetti - HPEC: a software for the evaluation of large sparse 
eigenvalue problems on multicomputers, Int. J. of Pure and Appl. Math., in print, 2005.
M.R. Guarracino, F. Perla, P. Zanetti - A parallel block Lanczos algorithm and its 
implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on 
multicomputers - Int. J. of Appl. Math. and Comp. Sc, submitted, 2005.
M.R. Guarracino, F. Perla, P. Zanetti - A Sparse Nonsymmetric Eigensolver for Distributed 
Memory Architectures, Int. J. of Parallel, Emergent and Distributed Systems, submitted, 2005.



Future work

• Develop a chunking technique for ReGEC

• (Semi) Automatic determination of parameters.

• Test iterative projection methods with respect to 
quality assessment of computed solutions. 



Conclusions

• Supervised learning will continue to be an active 
research field.

• Many problem are still open and in need of 
answers.

• Binary and n-ary classification will play a central 
role in biomedical applications.


