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Introduction st

o Supervised learning refers to the capability of a
system to learn from examples (training set).

e The trained system is able to provide an answer
(output) for each new question (/npui).

o Supervised means the desired output for the
training set is provided by an external teacher.

e Binary classification is among the most
successful methods for supervised learning.

F. Cucker and S. Smale On the mathematical foundation of learning.
Bulletin of the American Mathematical Society, 39(1), 1-49, 2001.




Applications

A bank classifies customer loan requests in good and
bad, depending on their ability to pay back.

Inland revenue tries to discover more tax evaders
starting from the characteristics of known ones.

A car built-in system detects if a walking pedestrian is
going to cross the street.

A decision support system automatically discards medical
analysis of patients not showing a specific pattern.

T. Poggio and S. Smale The Mathematics of Learning: Dealing with Data
AMS Notice 537-544, 2003.




)
Applications Ll

e Many applications in biology and medicine:

— Tissues that are prone to cancer can be detected with
high accuracy,

— New DNA sequences or proteins can be tracked down
to their origins.

— Protein folding provides important information on
protein expression level.

— Identification of new genes or isoforms of gene
expressions in large datasets.

— Analysis and reduction of data spatiality and principal
characteristics for protein determination.

V. Boginski, P. Pardalos, A. Vazacopoulos Network-based Models and Algorithms in DM &
KD. Handbook of Combinatorial Optimization, Kluwer (5), 217-258, 2004




Linear discriminant planes

e Consider a binary classification task with points in two
linearly separable sets.
— There exists a plane that classifies all points in the two sets

e There are infinitely many planes that correctly classify

the training data.

K. Bennet and C. Campbell Support Vector Machines: Hype or Hallelujah?, SIGKDD Expl.,
2,2, 1-13, 2000.




Best plane

e To construct the plane “furthers” from both classes, we
examine the convex hull of each set.

e The best plane bisects closest points in the convex hulls.




SVM classification

o A different approach, yielding the same solution, is to
maximize the margin between support planes
— Support planes leave all points of a class on one side

e Support planes are pushed apart until they “bump” into
a small set of data points (support vectors).




SVM classification

e Support Vector Machines are the state of the art for the
existing classification methods.

e Their robustness is due to the strong fundamentals of
statistical learning theory.

e The training relies on optimization of a quadratic convex
cost function, for which many methods are available.
— Available software includes SVM-Lite and LIBSVM.

e These technigues can be extended to the nonlinear
discrimination, embedding the data in a nonlinear space
using kernel functions.




A different approach

e The binary classification problem can be formulated as a
generalized eigenvalue problem (GEP).

e The problem can be restated as: find two hyper planes
that describe the two classes.

O. L. Mangasarian and E. W. Wild Multisurface Proximal Support Vector Classification
via Generalized Eigenvalues. Data Mining Institute Tech. Rep. 04-03, June 2004.




GEP formulation

Find a plane X"w,=y, the closer to A and the
farther from B:

Aw — ey

min
w,y7=0 || Bw — ey




GEP technique

|Aw — er|]

min
w0 || Bw — ey

Let.
G=[A —€'[A —€], H=[B —€]'[B —¢], z=[w 1]

Previous equation becomes:
- ZGz
min
2€R™ 2/ Hz

Raleigh quotient of Generalized Eigenvalue Problem
GxX=AHX.




GEP technique

Conversely, to find the plane closer to B and further

from A we need to solve:

B _
. | Bw — ey|
w70 ||Aw — ey|

which has the same eigenvectors of the previous
problem and reciprocal eigenvalues.

We only need to evaluate the eigenvectors related to
min and max eigenvalues of Gx=AHx.




GEP technique e

Let [w, ] and [w,, ».] be eigenvectors associated to min and
max eigenvalues of Gx=AHXx:

e a € A closer to x'w, - =0 than to x'w_-7,,=0,
* b € B closer to x'w,,-7,=0 than to x'w;-7,=0.




Example

Let: i
14::{2 o}’ B::{o 0}7 !i“‘

2 1 1 1

Set G=[A -e]' [A -e] and H=|B -e]' [B -e], we obtain:

8 2 —4] 1 1 —1 ]
G = 2 1 -1, H= 1 1 -1 .
e -1 -1 2

Min and max eigenvalues of GXx=AHXx are A,=0 and A;=00
and the respective eigenvectors:

X,=[102], x,=[1-10].

The resulting planes are X =2 and X —y = 0, which are
closer to one set and further from the other.




Regularization

e A and B can be rank-deficient.

G and H are always rank-deficient,

— the product of matrices of dimension (n +1 x n) is of
rank at least N = 0/co eigenvalue.

e Do we need to regularize the problem to obtain a
well posed problem?




A first solution

e Mangasarian et al. proposes GEPSVM:

|Aw — ev||* + 9]|2|1°

min

w70  ||[Bw—ey|? ]
- [1Bw = ey|2+ 9212
waE0  [[Aw —ey|®

e Only minimum eigenvalue/eigenvector for each problem.

e No gain using computational kernels for single eigenvalue
and eigenvector computation.




A useful theorem s~

Consider GEP GX=AHX and the transformed G;X=AHx
defined by:

G*=1m1G—-661H, H"=1mH — G,

for each choice of scalars t,, 1,, 3, and &,, such that the 2 x 2
matrix 5

—

02 T1

Then G*x=1 H*x has the same eigenvectors of GX=AHX.

IS nonsingular.

Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York,
NY, 1992,




@ =
Linear case ’

e In the linear case, the theorem can be applied. For
1,=1,=1 and §,=8,=6, the transformed problem is:

i Aw — ev||? + §||Bw — ev||?
w#0 || Bw — ev||? + §||Aw — evy||2

e Aslong as 6 # 1, matrix Q is non-degenerate.

e This transformation works if, in each class of the training
set, there is a number of linearly independent points
equal to the number of features.

— prob (Ker(G) N Ker(H) #0) =0

M.R. Guarracino On Classification Methods for Mathematical Models of Learning. Rapp. Tec. 3.246.1572 del
Gruppo di Ottimizzazione e Ricerca Operativa, Dip. di Matematica, Univ. di Pisa, Febbraio 2005.




Nonlinear case b5

e A standard technique to obtain greater separability between
sets is to embed the points into a nonlinear space, via kernel
functions, like the gaussian kernel .

lw;— 1|2

K(xsx5) =€~ o
e Each element of kernel matrix is:

146,112
K(A,C)jj=e = ©

where 1A
C= B

K. Bennett and O. Mangasarian, Robust Linear Programming Discrimination of Two Linearly
Inseparable Sets, Optimization Methods and Software, 1, 23-34, 1992.




Nonlinear case

e Using a gaussian kernel the problem becomes:

KA, Ou— e
w0 ||K (B, CYu — ev]2

to produce the proximal surfaces:

K(z,C)u; —v1 =0, K(x,C)up—7v2=0

e The associated GEP involves matrices of the order of the
training set and rank at most the number of features.




Nonlinear case

e Matrices are deeply rank deficient and the problem is ill
posed.

e We propose to generate the two proximal surfaces:
K(z,C)ui —v1 =0, K(z,Clup—v2 =0
solving the problem

- K(A,CQ)u —ey|? + 6| Kpu — eyl|?
w70 |[K (B, C)u — ey||? + || K 4u — e[

where IZA and IZB are main diagonals of K(A,C) and K(B,C).

M. R. Guarracino, C. Cifarelli, O. Seref, P. M.Pardalos, A Classification Method based on
Generalized Eigenvalue Problems, submitted to OMS, 2005.




Numerical experiments

e Performance on benchmark data sets publicly available.
— Data from UCI, Odewahn, and IDA repository.

e Accuracy results for linear and nonlinear kernel SVMs
and GEPSVMare taken from literature.

o Kernel parameters have been taken from literature.

M.R. Guarracino A Classification Method based on Generalized Eigenvalue Problems,
Optimization in Medicine, Coimbra, July 2005.
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Classification accuracy: linear kernel

dataset n+k dim ReGEC GEPSVM SVMs

NDC 300 7 87.60 86.70 89.00
ClevelandHeart 297 13 186.05 81.80 83.60

Pimalndians /68 8 7491 73.60 75.70
GalaxyBright (2462 14 98.24 98.60 98.30

Accuracy results have been obtained using ten fold cross
validation




Elapsed time: linear kernel

dataset ReGEC GEPSVM LIBSVM SVMiight
NDC 0.1e-03 0.2e-03 0.8991 22.002
ClevelandHeart 1.9e-04 [3.6e-04 9.9e-03 0.3801

Pimalndians 1.2e-04 2.4e-04 15.873 48.809
GalaxyBright [0.3e-3 0.5e-3 1.2027 21.128

Results computed on Xeon 3.2GHz, 6GB RAM, RH Linux,

Matlab 6.5.
Matlab function eig used for GEPSVM and ReGEC.

Latest releases of libsmv and SVMIight used.




Classification accuracy: gaussian kernel

dataset n+k test m o G ReGEC GEPSVM SVM
Breast-cancer 200 77 9 1.e03 50 7340 71.73 73.49
Diabetis 468 300 8 1.e-03 500 74.56 74.75 76.21
German /00 300 20 1.e-03 500 70.26 69.36 7/5.66
Thyroid 140 75 5 1.e03 0.8 92.76 92.71 95.20
Heart 170 100 13 1.e-03 120 82.06 81.43 83.05
Waveform 400 4600 21 1.e-03 150 88.56 87.70 90.21
Flare-solar 666 400 9 1.e-03 3 58.23 59.63 65.80
Titanic 150 2051 3 1.e-03 150 75.29 75.77 77.36
Banana 400 4900 2 1.e-05 0.2 84.44 8553 89.15

Accuracy results have been obtained using ten random

splits provided by IDA repository




Elapsed time: gaussian kernel

dataset ReGEC GEPSVM LIBSVM  SVMlight
Breast-cancer 0.0698 0.3545 0.0229 0.1188
Diabetis 1.1474 5.8743 0.1323  0.2022
German 3.8177 25.2349 0.2855 0.4005
Thyroid 0.0243 0.1208 0.0053 0.0781
Heart 0.0316 0.2139 0.0172 0.1372
Waveform 0.5962 4.409 0.0916  0.2228
Flare-solar 1.8737 16.2658 0.1429 4.4524
Titanic 0.0269 0.1134 0.0032  7.1953
Banana 0.4989 3.1102 0.0344  1.3505




Work in progress

e A parallel eigensolver for large sparse matrices has been
implemented and tested.

e Its generalization to GEP is in sight.

e A parallel version of ReGEC has been implemented.
Tests of its performance are in progress.

M.R. Guarracino - HPEC: High Performance Eigenvalue Computation, a software for the
evaluation of large sparse eigenvalue problems - Parallel Matrix Algorithms and Applications,
Marsiglia, Ottobre 2004.

M.R. Guarracino, F. Perla, P. Zanetti - HPEC: a software for the evaluation of large sparse
eigenvalue problems on multicomputers, Int. J. of Pure and Appl. Math., in print, 2005.

M.R. Guarracino, F. Perla, P. Zanetti - A parallel block Lanczos algorithm and its
implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on
multicomputers - Int. J. of Appl. Math. and Comp. Sc, submitted, 2005.

M.R. Guarracino, F. Perla, P. Zanetti - A Sparse Nonsymmetric Eigensolver for Distributed
Memory Architectures, Int. J. of Parallel, Emergent and Distributed Systems, submitted, 2005.




Future work

e Develop a chunking technigue for ReGEC
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e (Semi) Automatic determination of parameters.

o Test iterative projection methods with respect to
quality assessment of computed solutions.




A,
Conclusions posi )

e Supervised learning will continue to be an active
research field.

e Many problem are still open and in need of
answers.

e Binary and n-ary classification will play a central
role in biomedical applications.




